Allan Victor
commited on
Commit
·
6824f92
1
Parent(s):
ba148d6
train_loop
Browse files- Util_funs.py +15 -13
Util_funs.py
CHANGED
@@ -242,22 +242,20 @@ def train_loop(data_train_loader, data_test_loader, model, device, epoch = 4, lr
|
|
242 |
input_ids, attention_mask,q_token_type_ids, label_id = batch
|
243 |
|
244 |
# Predictions
|
245 |
-
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
label_id = label_id.detach().cpu()
|
250 |
-
labels.append(label_id.numpy().squeeze())
|
251 |
-
|
252 |
logit = feature[1].detach().cpu()
|
253 |
-
|
254 |
|
255 |
-
|
256 |
-
features.append(feature_lat.numpy())
|
|
|
257 |
|
258 |
# Accuracy over the test's bach
|
259 |
-
acc = fn.accuracy(prediction, label_id).item()
|
260 |
-
|
261 |
del input_ids, attention_mask, label_id, batch
|
262 |
|
263 |
if print_info:
|
@@ -268,9 +266,13 @@ def train_loop(data_train_loader, data_test_loader, model, device, epoch = 4, lr
|
|
268 |
torch.cuda.empty_cache()
|
269 |
|
270 |
del model_meta, optimizer
|
|
|
|
|
|
|
|
|
271 |
|
272 |
-
return
|
273 |
-
|
274 |
# Process predictions and map the feature_map in tsne
|
275 |
def map_feature_tsne(features, labels, predi_logit):
|
276 |
|
|
|
242 |
input_ids, attention_mask,q_token_type_ids, label_id = batch
|
243 |
|
244 |
# Predictions
|
245 |
+
_, feature, _ = model_meta(input_ids, attention_mask,q_token_type_ids, labels = label_id.squeeze())
|
246 |
|
247 |
+
# prediction = prediction.detach().cpu().squeeze()
|
248 |
+
# label_id = label_id.detach().cpu()
|
|
|
|
|
|
|
249 |
logit = feature[1].detach().cpu()
|
250 |
+
# feature_lat = feature[0].detach().cpu()
|
251 |
|
252 |
+
# labels.append(label_id.numpy().squeeze())
|
253 |
+
# features.append(feature_lat.numpy())
|
254 |
+
predi_logit.append(logit.numpy())
|
255 |
|
256 |
# Accuracy over the test's bach
|
257 |
+
# acc = fn.accuracy(prediction, label_id).item()
|
258 |
+
# all_acc.append(acc)
|
259 |
del input_ids, attention_mask, label_id, batch
|
260 |
|
261 |
if print_info:
|
|
|
266 |
torch.cuda.empty_cache()
|
267 |
|
268 |
del model_meta, optimizer
|
269 |
+
|
270 |
+
logits = np.concatenate(np.array(predi_logit,dtype=object))
|
271 |
+
logits = torch.tensor(logits.astype(np.float32)).detach().clone()
|
272 |
+
# return features, labels, predi_logit
|
273 |
|
274 |
+
return logits.detach().clone()
|
275 |
+
|
276 |
# Process predictions and map the feature_map in tsne
|
277 |
def map_feature_tsne(features, labels, predi_logit):
|
278 |
|