--- license: other license_name: fair-ai-public-license-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 datasets: - pls2000/aiart_channel_nai3_geachu pipeline_tag: text-to-image --- ## Training (`arcaillous-xl.safetensors`) Configuration refered from KBlueLeaf/Kohaku-XL-Zeta, using 2x3090 and sd-scripts. ### Command args ``` NCCL_P2P_DISABLE=1 NCCL_IB_DISABLE=1 accelerate launch --num_cpu_threads_per_process 4 sdxl_train.py \ --pretrained_model_name_or_path="/ai/data/sd/models/Stable-diffusion/Illustrious-XL-v0.1.safetensors" \ --dataset_config="arcaillous-xl.toml" \ --output_dir="results/ckpt" --output_name="arcaillous-xl" \ --save_model_as="safetensors" \ --gradient_accumulation_steps 64 \ --learning_rate=1e-5 --optimizer_type="Lion8bit" \ --lr_scheduler="constant_with_warmup" --lr_warmup_steps 100 --optimizer_args "weight_decay=0.01" "betas=0.9,0.95" --min_snr_gamma 5 \ --sdpa \ --no_half_vae \ --cache_latents --cache_latents_to_disk \ --gradient_checkpointing \ --full_bf16 --mixed_precision="bf16" --save_precision="bf16" \ --ddp_timeout=10000000 \ --max_train_epochs 4 --save_every_n_epochs 1 --save_every_n_steps 50 \ ``` ## Lora Training (`lora_arcain.safetensors`) Results are simillar with arcaillous-xl with Illustrious-xl, but this lora can applied with other ILXL-based models such as NoobAI-XL. Configuration is simillar to `arcaillous-xl`. ``` NCCL_P2P_DISABLE=1 NCCL_IB_DISABLE=1 accelerate launch --num_cpu_threads_per_process 4 sdxl_train_network.py \ --network_train_unet_only \ --network_module="networks.lora" --network_dim 256 --network_alpha 128 \ --pretrained_model_name_or_path="/ai/data/sd/models/Stable-diffusion/Illustrious-XL-v0.1.safetensors" \ --dataset_config="arcain.lora.toml" \ --output_dir="results/lora" --output_name="lora_arcain" \ --save_model_as="safetensors" \ --gradient_accumulation_steps 32 \ --learning_rate=1e-5 --optimizer_type="Lion8bit" \ --lr_scheduler="constant_with_warmup" --lr_warmup_steps 100 --optimizer_args "weight_decay=0.01" "betas=0.9,0.95" --min_snr_gamma 5 \ --sdpa \ --no_half_vae \ --cache_latents --cache_latents_to_disk \ --gradient_checkpointing \ --full_bf16 --mixed_precision="bf16" --save_precision="bf16" \ --ddp_timeout=10000000 \ --max_train_epochs 4 --save_every_n_epochs 1 --save_every_n_steps 50 \ ```