Behpouyan commited on
Commit
383ae7b
·
verified ·
1 Parent(s): 73f173b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -184
README.md CHANGED
@@ -1,199 +1,64 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags: [Fill Mask, Persian , BERT]
4
  ---
5
 
 
 
 
 
 
 
6
  ## Model Details
7
 
8
  ### Model Description
9
 
10
+ This model is fine-tuned for the task of masked language modeling in Persian. The model can predict missing words in Persian sentences when a word is replaced by the [MASK] token. It is useful for a range of NLP applications, including text completion, question answering, and contextual understanding of Persian texts.
 
 
 
 
 
 
 
 
 
 
11
 
12
+ - **Developed by:** Behpouyan
13
+ - **Model type:** Encoder
14
+ - **Language(s) (NLP):** Persian
 
 
 
 
 
 
 
 
15
 
16
  ### Direct Use
17
 
18
+ The model is intended to be used directly for the task of predicting the most likely word for a masked token in Persian sentences. By simply providing a sentence with a masked word (e.g., <mask>), users can leverage the model for text completion, semantic prediction, and contextual understanding.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ## How to Get Started with the Model
21
 
22
+ ``` python
23
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
24
+ import torch
25
+
26
+ # Load the tokenizer and model
27
+ tokenizer = AutoTokenizer.from_pretrained("Behpouyan/Behpouyan-Fill-Mask")
28
+ model = AutoModelForMaskedLM.from_pretrained("Behpouyan/Behpouyan-Fill-Mask")
29
+
30
+ # List of 5 Persian sentences with a masked word (replacing a word with [MASK])
31
+ sentences = [
32
+ "این کتاب بسیار <mask> است.", # The book is very [MASK]
33
+ "مشتری همیشه از <mask> شما راضی است.", # The customer is always satisfied with your [MASK]
34
+ "من به دنبال <mask> هستم.", # I am looking for [MASK]
35
+ "این پروژه نیاز به <mask> دارد.", # This project needs [MASK]
36
+ "تیم ما برای انجام کارها <mask> است." # Our team is [MASK] to do the tasks
37
+ ]
38
+
39
+ # Function to predict masked words
40
+ def predict_masked_word(sentence):
41
+ # Tokenize the input sentence
42
+ inputs = tokenizer(sentence, return_tensors="pt")
43
+
44
+ # Forward pass to get logits
45
+ with torch.no_grad():
46
+ outputs = model(**inputs)
47
+ logits = outputs.logits
48
+
49
+ # Get the position of the [MASK] token
50
+ mask_token_index = torch.where(inputs.input_ids == tokenizer.mask_token_id)[1].item()
51
+
52
+ # Get the predicted token
53
+ predicted_token_id = torch.argmax(logits[0, mask_token_index]).item()
54
+ predicted_word = tokenizer.decode([predicted_token_id])
55
+
56
+ return predicted_word
57
+
58
+ # Test the model on the sentences
59
+ for sentence in sentences:
60
+ predicted_word = predict_masked_word(sentence)
61
+ print(f"Sentence: {sentence}")
62
+ print(f"Predicted word: {predicted_word}")
63
+ print("-" * 50)
64
+ ```