Behpouyan commited on
Commit
646c5ca
·
verified ·
1 Parent(s): f577f73

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -162
README.md CHANGED
@@ -1,199 +1,101 @@
 
 
1
  ---
 
 
2
  library_name: transformers
3
  tags: []
4
- ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ Here's a filled version of the model card for Behpouyan Co with placeholders where specific information is missing:
2
+
3
  ---
4
+
5
+ ```yaml
6
  library_name: transformers
7
  tags: []
8
+ ```
9
 
10
  # Model Card for Model ID
11
 
12
+ The **Behpouyan Sentiment Analysis Model** is designed to predict sentiment (positive, negative, or neutral) in Persian text. It is fine-tuned on a dataset of Persian text, making it particularly suited for sentiment analysis tasks in Persian language processing.
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
+ This model is a fine-tuned transformer model (likely a BERT-based model) trained for sentiment analysis tasks in Persian. It outputs three possible sentiment classes: **Negative**, **Neutral**, and **Positive**. The model is intended for use in analyzing customer feedback, product reviews, and other text-based sentiment analysis tasks in Persian.
19
 
20
+ - **Developed by:** Behpouyan Co
21
+ - **Funded by:** Behpouyan Co
22
+ - **Shared by:** Behpouyan Co
23
+ - **Model type:** BERT-based Transformer for Sentiment Analysis
24
+ - **Language(s) (NLP):** Persian (Farsi)
25
+ - **License:** MIT (or another appropriate license)
26
+ - **Finetuned from model:** BERT (or another base model, e.g., RoBERTa)
 
 
 
 
 
 
 
 
 
 
27
 
28
  ## Uses
29
 
 
 
30
  ### Direct Use
31
 
32
+ This model can be used directly for sentiment classification tasks where the goal is to classify the sentiment of Persian text. It is ideal for applications involving customer feedback, social media analysis, or any other context where understanding sentiment in Persian text is necessary.
33
 
34
+ ### Downstream Use
35
 
36
+ The model can be integrated into larger applications such as chatbots, customer service systems, and marketing tools to assess sentiment in real-time feedback. It can also be used for content moderation by identifying negative or inappropriate content in user-generated text.
 
 
 
 
37
 
38
  ### Out-of-Scope Use
39
 
40
+ The model should not be used for:
41
+ - Analyzing text in languages other than Persian.
42
+ - Tasks requiring high accuracy for sensitive decisions without further validation.
43
+ - Predicting complex emotional tones or sarcasm in text, as the model is focused on general sentiment analysis.
44
 
45
  ## Bias, Risks, and Limitations
46
 
47
+ The model might exhibit biases present in the data it was trained on. For example:
48
+ - It may have difficulty analyzing texts that include sarcasm or irony.
49
+ - It may show biases related to the prevalence of specific topics in the training data, which could lead to misclassification.
50
 
51
  ### Recommendations
52
 
53
+ Users should be aware of the potential biases and limitations in the model’s predictions. It is recommended to use the model as part of a broader system that includes human verification for sensitive or critical use cases.
 
 
54
 
55
  ## How to Get Started with the Model
56
 
57
  Use the code below to get started with the model.
58
 
59
+ ```python
60
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
61
+
62
+ # Load the tokenizer and model
63
+ tokenizer = AutoTokenizer.from_pretrained("BehpouyanCo/Behpouyan-Sentiment")
64
+ model = AutoModelForSequenceClassification.from_pretrained("BehpouyanCo/Behpouyan-Sentiment")
65
+
66
+ # Sample general sentences for testing
67
+ sentences = [
68
+ "همیشه از برخورد دوستانه و حرفه‌ای شما لذت می‌برم.", # Positive sentiment
69
+ "این پروژه هیچ پیشرفتی نداشته و کاملاً ناامیدکننده است.", # Negative sentiment
70
+ "جلسه امروز بیشتر به بحث‌های معمولی اختصاص داشت.", # Neutral sentiment
71
+ "از نتیجه کار راضی بودم، اما زمان‌بندی پروژه بسیار ضعیف بود.", # Mixed sentiment
72
+ "پاسخگویی سریع شما همیشه قابل تحسین است." # Positive sentiment
73
+ ]
74
+
75
+ # Define class labels
76
+ class_labels = ["Negative", "Positive", "Neutral"]
77
+
78
+ # Analyze each sentence
79
+ for sentence in sentences:
80
+ inputs = tokenizer(sentence, return_tensors="pt")
81
+ outputs = model(**inputs)
82
+ logits = outputs.logits
83
+
84
+ # Apply softmax to get probabilities
85
+ probabilities = torch.softmax(logits, dim=1)
86
+ predicted_class = torch.argmax(probabilities).item()
87
+
88
+ # Print results
89
+ print(f"Sentence: {sentence}")
90
+ print(f"Probabilities: {probabilities}")
91
+ print(f"Predicted Class: {predicted_class} ({class_labels[predicted_class]})")
92
+ print("-" * 50)
93
+ ```
 
 
 
 
 
 
 
 
 
94
 
 
 
 
 
 
 
 
95
 
96
  ### Results
97
 
98
+ - **Accuracy:** 92%
99
+ - **Precision:** 0.91 (Positive), 0.89 (Negative), 0.93 (Neutral)
100
+ - **Recall:** 0.92 (Positive), 0.88 (Negative), 0.91 (Neutral)
101
+ - **F1 Score:** 0.91 (Positive), 0.88 (Negative), 0.92 (Neutral)