mabaochang
commited on
Commit
·
a86679b
1
Parent(s):
863044c
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- text2text-generation
|
5 |
+
pipeline_tag: text2text-generation
|
6 |
+
language:
|
7 |
+
- zh
|
8 |
+
- en
|
9 |
+
---
|
10 |
+
|
11 |
+
Considering LLaMA's license constraints, the model is for research and learning only.
|
12 |
+
Please strictly respect LLaMA's usage policy. We are not allowed to publish weights for LLaMA, of course, even finetuned, but there is no problem publishing the difference, a patch that we suggest to apply to the files.
|
13 |
+
The encryption is a simple XOR between files, ensuring that only the people that have access to the original weights (from completely legal sources, of course) can transform them into finetuned weights.
|
14 |
+
You can find the decrypt code on https://github.com/LianjiaTech/BELLE/tree/main/models .
|
15 |
+
|
16 |
+
|
17 |
+
# Model Card for Model ID
|
18 |
+
|
19 |
+
## Welcome
|
20 |
+
If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE !
|
21 |
+
|
22 |
+
## Update
|
23 |
+
A new checkpoint trained with learning rate of 5e-6 is uploaded.
|
24 |
+
In our evaluation, llama trained with smaller lr achieved better performance.
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
BELLE-LLAMA-13B-2M-enc is based on LLAMA 13B and finetuned with 2M Chinese data combined with 50,000 pieces of English data from the open source Stanford-Alpaca, resulting in good Chinese instruction understanding and response generation capabilities.
|
28 |
+
|
29 |
+
The code of Chinese data generation and other detailed information can be found in our Github project repository: https://github.com/LianjiaTech/BELLE.
|
30 |
+
|
31 |
+
|
32 |
+
## Training hyper-parameters
|
33 |
+
| Parameter | Value |
|
34 |
+
| ------ | ------ |
|
35 |
+
| Batch size | 16 |
|
36 |
+
| Learning rate | 5e-6 |
|
37 |
+
| Epochs | 3 |
|
38 |
+
|Weight_decay | 0.0 |
|
39 |
+
|Warmup_rate | 0.03 |
|
40 |
+
|LR_scheduler | cosine |
|
41 |
+
|
42 |
+
## Download, Convert & Check
|
43 |
+
After you git clone this model
|
44 |
+
```
|
45 |
+
md5sum ./*
|
46 |
+
029965adbff7a240f33d040dedca0a54 ./config.json.e366f0c901ee336cb921450f975b3e3c5e32874035d227f4263dbcb5d966b822.enc
|
47 |
+
b1cc6321ba72757b82842cc44ffadbf3 ./generation_config.json.fd7ff399e5568cc21a0a8414f43df88ef7c424995b9b97a90563165d2cf79efd.enc
|
48 |
+
0311f7aac77860f24e5d6379043a1c5e ./pytorch_model-00001-of-00003.bin.5abb160ecbd441c6a1fbe00a9eaa194ee0bd8cd75850c24f503336bd29f0dc45.enc
|
49 |
+
e1f8ffc06377eaa516c72091d49af6ec ./pytorch_model-00002-of-00003.bin.46a0e748edff9f0f82aa5f3e721e80e0f342f3d03dc47d0ec6514ea78a585320.enc
|
50 |
+
f1fd70e919041e63d7f8b104380dfcb1 ./pytorch_model-00003-of-00003.bin.ec6e4d45dc4c51f2b9abff5ea9840f06f633e065cdf574b71e96366c26a01578.enc
|
51 |
+
bf19c5b8dc64bfb19400a4b7fb3bc5b6 ./pytorch_model.bin.index.json.72e91e29282dae48ea5562fcf4d6ca0d5a9c2a30ebc8d67174a19e192552a20b.enc
|
52 |
+
1ab707fa9b0c4be294fd0b867d73e919 ./special_tokens_map.json.44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a.enc
|
53 |
+
cae7b4ee8d1ad4e4402632bb0600cc17 ./tokenizer_config.json.ef7ef410b9b909949e96f172b17cbf7c68b11761c632715fa05a6088c0c2b9ac.enc
|
54 |
+
848005d07146c31e73a10020b3a3099a ./tokenizer.model.9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347.enc
|
55 |
+
```
|
56 |
+
|
57 |
+
After you decrypt the files using https://github.com/LianjiaTech/BELLE/tree/main/models
|
58 |
+
```
|
59 |
+
md5sum ./*
|
60 |
+
0fa6ff8379308d40f090878593f085a9 ./config.json
|
61 |
+
2917a1cafb895cf57e746cfd7696bfe5 ./generation_config.json
|
62 |
+
1710f2d139d883d7e1e9a3f3198ee581 ./pytorch_model-00001-of-00003.bin
|
63 |
+
74b26646e31debd94c5c1092b3e39102 ./pytorch_model-00002-of-00003.bin
|
64 |
+
1c123bee82a65a43b6005b7040e20618 ./pytorch_model-00003-of-00003.bin
|
65 |
+
621720a147e0dd2a97580ab5dd0c5557 ./pytorch_model.bin.index.json
|
66 |
+
d463d8a04501fbf1d71feaa8fc1be250 ./README.md
|
67 |
+
99914b932bd37a50b983c5e7c90ae93b ./special_tokens_map.json
|
68 |
+
5526ad31f4928acb5219e295e5ff81ce ./tokenizer_config.json
|
69 |
+
eeec4125e9c7560836b4873b6f8e3025 ./tokenizer.model
|
70 |
+
```
|
71 |
+
|
72 |
+
## Use model
|
73 |
+
Please note that the input should be formatted as follows in both **training** and **inference**.
|
74 |
+
``` python
|
75 |
+
Human: {input} \n\nAssistant:
|
76 |
+
```
|
77 |
+
|
78 |
+
In order to load BELLE-LLAMA-13B-2M-enc with huggingface transformers, please install the main version, as the latest stable version doesn't support LLAMA (as of March 26, 2023).
|
79 |
+
``` python
|
80 |
+
pip install git+https://github.com/huggingface/transformers
|
81 |
+
```
|
82 |
+
|
83 |
+
After you decrypt the files, BELLE-LLAMA-13B-2M can be easily loaded with LlamaForCausalLM.
|
84 |
+
``` python
|
85 |
+
from transformers import LlamaForCausalLM, AutoTokenizer
|
86 |
+
import torch
|
87 |
+
|
88 |
+
ckpt = './result/BELLE-LLAMA-13B-2M'
|
89 |
+
device = torch.device('cuda')
|
90 |
+
model = LlamaForCausalLM.from_pretrained(ckpt, device_map='auto', low_cpu_mem_usage=True)
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(ckpt)
|
92 |
+
prompt = "Human: 写一首中文歌曲,赞美大自然 \n\nAssistant: "
|
93 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
94 |
+
generate_ids = model.generate(input_ids, max_new_tokens=500, do_sample = True, top_k = 30, top_p = 0.85, temperature = 0.5, repetition_penalty=1., eos_token_id=2, bos_token_id=1, pad_token_id=0)
|
95 |
+
output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
96 |
+
response = output[len(prompt):]
|
97 |
+
|
98 |
+
```
|
99 |
+
|
100 |
+
## Limitations
|
101 |
+
There still exists a few issues in the model trained on current base model and data:
|
102 |
+
|
103 |
+
1. The model might generate factual errors when asked to follow instructions related to facts.
|
104 |
+
|
105 |
+
2. Occasionally generates harmful responses since the model still struggles to identify potential harmful instructions.
|
106 |
+
|
107 |
+
3. Needs improvements on reasoning and coding.
|
108 |
+
|
109 |
+
Since the model still has its limitations, we require developers only use the open-sourced code, data, model and any other artifacts generated via this project for research purposes. Commercial use and other potential harmful use cases are not allowed.
|
110 |
+
|
111 |
+
|
112 |
+
## Citation
|
113 |
+
|
114 |
+
Please cite us when using our code, data or model.
|
115 |
+
|
116 |
+
```
|
117 |
+
@misc{BELLE,
|
118 |
+
author = {Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Baochang Ma, Xiangang Li},
|
119 |
+
title = {BELLE: Be Everyone's Large Language model Engine},
|
120 |
+
year = {2023},
|
121 |
+
publisher = {GitHub},
|
122 |
+
journal = {GitHub repository},
|
123 |
+
howpublished = {\url{https://github.com/LianjiaTech/BELLE}},
|
124 |
+
}
|
125 |
+
```
|