End of training
Browse files- README.md +81 -81
- logs/events.out.tfevents.1718614849.HCIDC-SV-DMZ-ORC-NODE02.723418.0 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +25 -25
- special_tokens_map.json +37 -37
- tokenizer_config.json +80 -80
README.md
CHANGED
@@ -1,81 +1,81 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
base_model: microsoft/layoutlm-base-uncased
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- funsd
|
8 |
-
model-index:
|
9 |
-
- name: layoutlm-funsd
|
10 |
-
results: []
|
11 |
-
---
|
12 |
-
|
13 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
-
should probably proofread and complete it, then remove this comment. -->
|
15 |
-
|
16 |
-
# layoutlm-funsd
|
17 |
-
|
18 |
-
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
-
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
-
|
29 |
-
## Model description
|
30 |
-
|
31 |
-
More information needed
|
32 |
-
|
33 |
-
## Intended uses & limitations
|
34 |
-
|
35 |
-
More information needed
|
36 |
-
|
37 |
-
## Training and evaluation data
|
38 |
-
|
39 |
-
More information needed
|
40 |
-
|
41 |
-
## Training procedure
|
42 |
-
|
43 |
-
### Training hyperparameters
|
44 |
-
|
45 |
-
The following hyperparameters were used during training:
|
46 |
-
- learning_rate: 3e-05
|
47 |
-
- train_batch_size: 16
|
48 |
-
- eval_batch_size: 8
|
49 |
-
- seed: 42
|
50 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
-
- lr_scheduler_type: linear
|
52 |
-
- num_epochs: 15
|
53 |
-
- mixed_precision_training: Native AMP
|
54 |
-
|
55 |
-
### Training results
|
56 |
-
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer
|
58 |
-
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
|
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
|
75 |
-
|
76 |
-
### Framework versions
|
77 |
-
|
78 |
-
- Transformers 4.41.2
|
79 |
-
- Pytorch 2.3.1+
|
80 |
-
- Datasets 2.19.2
|
81 |
-
- Tokenizers 0.19.1
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/layoutlm-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- funsd
|
8 |
+
model-index:
|
9 |
+
- name: layoutlm-funsd
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# layoutlm-funsd
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7113
|
21 |
+
- Answer: {'precision': 0.7158962795941376, 'recall': 0.7849196538936959, 'f1': 0.7488207547169812, 'number': 809}
|
22 |
+
- Header: {'precision': 0.3418803418803419, 'recall': 0.33613445378151263, 'f1': 0.3389830508474576, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7726480836236934, 'recall': 0.8328638497652582, 'f1': 0.8016267510167194, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7258
|
25 |
+
- Overall Recall: 0.7837
|
26 |
+
- Overall F1: 0.7537
|
27 |
+
- Overall Accuracy: 0.8028
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 15
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7452 | 1.0 | 10 | 1.5534 | {'precision': 0.03913894324853229, 'recall': 0.049443757725587144, 'f1': 0.043691971600218454, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.26121794871794873, 'recall': 0.3061032863849765, 'f1': 0.2818849978383052, 'number': 1065} | 0.1612 | 0.1836 | 0.1717 | 0.4436 |
|
60 |
+
| 1.3859 | 2.0 | 20 | 1.1959 | {'precision': 0.3140161725067385, 'recall': 0.2880098887515451, 'f1': 0.30045132172791744, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5303030303030303, 'recall': 0.5915492957746479, 'f1': 0.559254327563249, 'number': 1065} | 0.4467 | 0.4330 | 0.4397 | 0.6150 |
|
61 |
+
| 1.037 | 3.0 | 30 | 0.8960 | {'precision': 0.5337078651685393, 'recall': 0.5871446229913473, 'f1': 0.559152442613302, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.616597510373444, 'recall': 0.6976525821596244, 'f1': 0.654625550660793, 'number': 1065} | 0.5724 | 0.6111 | 0.5911 | 0.7266 |
|
62 |
+
| 0.7743 | 4.0 | 40 | 0.7486 | {'precision': 0.6307363927427961, 'recall': 0.73053152039555, 'f1': 0.6769759450171822, 'number': 809} | {'precision': 0.1044776119402985, 'recall': 0.058823529411764705, 'f1': 0.07526881720430108, 'number': 119} | {'precision': 0.6512013256006628, 'recall': 0.7380281690140845, 'f1': 0.6919014084507042, 'number': 1065} | 0.6260 | 0.6944 | 0.6584 | 0.7694 |
|
63 |
+
| 0.6151 | 5.0 | 50 | 0.7067 | {'precision': 0.6449511400651465, 'recall': 0.7342398022249691, 'f1': 0.6867052023121387, 'number': 809} | {'precision': 0.21686746987951808, 'recall': 0.15126050420168066, 'f1': 0.1782178217821782, 'number': 119} | {'precision': 0.6762589928057554, 'recall': 0.7943661971830986, 'f1': 0.7305699481865285, 'number': 1065} | 0.6466 | 0.7316 | 0.6864 | 0.7804 |
|
64 |
+
| 0.5319 | 6.0 | 60 | 0.6947 | {'precision': 0.6685022026431718, 'recall': 0.7503090234857849, 'f1': 0.707047175305766, 'number': 809} | {'precision': 0.24096385542168675, 'recall': 0.16806722689075632, 'f1': 0.19801980198019803, 'number': 119} | {'precision': 0.7186700767263428, 'recall': 0.7915492957746478, 'f1': 0.7533512064343162, 'number': 1065} | 0.6793 | 0.7376 | 0.7072 | 0.7920 |
|
65 |
+
| 0.4602 | 7.0 | 70 | 0.6794 | {'precision': 0.6762430939226519, 'recall': 0.7564894932014833, 'f1': 0.7141190198366394, 'number': 809} | {'precision': 0.28225806451612906, 'recall': 0.29411764705882354, 'f1': 0.2880658436213992, 'number': 119} | {'precision': 0.7359307359307359, 'recall': 0.7981220657276995, 'f1': 0.7657657657657657, 'number': 1065} | 0.6854 | 0.7511 | 0.7168 | 0.7980 |
|
66 |
+
| 0.4119 | 8.0 | 80 | 0.6743 | {'precision': 0.6659619450317125, 'recall': 0.7787391841779975, 'f1': 0.7179487179487181, 'number': 809} | {'precision': 0.32, 'recall': 0.2689075630252101, 'f1': 0.2922374429223744, 'number': 119} | {'precision': 0.7383820998278829, 'recall': 0.8056338028169014, 'f1': 0.7705433318365513, 'number': 1065} | 0.6884 | 0.7627 | 0.7236 | 0.7996 |
|
67 |
+
| 0.3663 | 9.0 | 90 | 0.6797 | {'precision': 0.6924803591470258, 'recall': 0.7626699629171817, 'f1': 0.7258823529411764, 'number': 809} | {'precision': 0.3017241379310345, 'recall': 0.29411764705882354, 'f1': 0.29787234042553185, 'number': 119} | {'precision': 0.7450812660393499, 'recall': 0.8178403755868544, 'f1': 0.7797672336615935, 'number': 1065} | 0.6999 | 0.7642 | 0.7306 | 0.7968 |
|
68 |
+
| 0.3556 | 10.0 | 100 | 0.6809 | {'precision': 0.699666295884316, 'recall': 0.7775030902348579, 'f1': 0.7365339578454333, 'number': 809} | {'precision': 0.34615384615384615, 'recall': 0.3025210084033613, 'f1': 0.32286995515695066, 'number': 119} | {'precision': 0.7615720524017467, 'recall': 0.8187793427230047, 'f1': 0.7891402714932126, 'number': 1065} | 0.7155 | 0.7712 | 0.7423 | 0.8013 |
|
69 |
+
| 0.3051 | 11.0 | 110 | 0.6935 | {'precision': 0.6933187294633077, 'recall': 0.7824474660074165, 'f1': 0.7351916376306621, 'number': 809} | {'precision': 0.3217391304347826, 'recall': 0.31092436974789917, 'f1': 0.3162393162393162, 'number': 119} | {'precision': 0.764102564102564, 'recall': 0.8394366197183099, 'f1': 0.7999999999999999, 'number': 1065} | 0.7116 | 0.7847 | 0.7464 | 0.8018 |
|
70 |
+
| 0.2905 | 12.0 | 120 | 0.7059 | {'precision': 0.7200929152148664, 'recall': 0.7663782447466008, 'f1': 0.7425149700598803, 'number': 809} | {'precision': 0.35185185185185186, 'recall': 0.31932773109243695, 'f1': 0.33480176211453744, 'number': 119} | {'precision': 0.7692307692307693, 'recall': 0.8262910798122066, 'f1': 0.7967406066093254, 'number': 1065} | 0.7279 | 0.7717 | 0.7491 | 0.7986 |
|
71 |
+
| 0.2804 | 13.0 | 130 | 0.7065 | {'precision': 0.709211986681465, 'recall': 0.7898640296662547, 'f1': 0.7473684210526316, 'number': 809} | {'precision': 0.35135135135135137, 'recall': 0.3277310924369748, 'f1': 0.3391304347826087, 'number': 119} | {'precision': 0.7648068669527897, 'recall': 0.8366197183098592, 'f1': 0.7991031390134529, 'number': 1065} | 0.7207 | 0.7873 | 0.7525 | 0.8008 |
|
72 |
+
| 0.261 | 14.0 | 140 | 0.7096 | {'precision': 0.713963963963964, 'recall': 0.7836835599505563, 'f1': 0.7472009428403065, 'number': 809} | {'precision': 0.3448275862068966, 'recall': 0.33613445378151263, 'f1': 0.3404255319148936, 'number': 119} | {'precision': 0.7722943722943723, 'recall': 0.8375586854460094, 'f1': 0.8036036036036036, 'number': 1065} | 0.7253 | 0.7858 | 0.7543 | 0.8028 |
|
73 |
+
| 0.2537 | 15.0 | 150 | 0.7113 | {'precision': 0.7158962795941376, 'recall': 0.7849196538936959, 'f1': 0.7488207547169812, 'number': 809} | {'precision': 0.3418803418803419, 'recall': 0.33613445378151263, 'f1': 0.3389830508474576, 'number': 119} | {'precision': 0.7726480836236934, 'recall': 0.8328638497652582, 'f1': 0.8016267510167194, 'number': 1065} | 0.7258 | 0.7837 | 0.7537 | 0.8028 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.41.2
|
79 |
+
- Pytorch 2.3.1+cu121
|
80 |
+
- Datasets 2.19.2
|
81 |
+
- Tokenizers 0.19.1
|
logs/events.out.tfevents.1718614849.HCIDC-SV-DMZ-ORC-NODE02.723418.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42807c0d7e155fa6df6479b25038476baeab8f9b430b7f5d66f7e10dc54b2d0e
|
3 |
+
size 15984
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2977241eaa7494fb71f9189f8ac69810c1671655349ae108799b508ae9ffb89b
|
3 |
size 450558212
|
preprocessor_config.json
CHANGED
@@ -1,25 +1,25 @@
|
|
1 |
-
{
|
2 |
-
"_valid_processor_keys": [
|
3 |
-
"images",
|
4 |
-
"do_resize",
|
5 |
-
"size",
|
6 |
-
"resample",
|
7 |
-
"apply_ocr",
|
8 |
-
"ocr_lang",
|
9 |
-
"tesseract_config",
|
10 |
-
"return_tensors",
|
11 |
-
"data_format",
|
12 |
-
"input_data_format"
|
13 |
-
],
|
14 |
-
"apply_ocr": true,
|
15 |
-
"do_resize": true,
|
16 |
-
"image_processor_type": "LayoutLMv2ImageProcessor",
|
17 |
-
"ocr_lang": null,
|
18 |
-
"processor_class": "LayoutLMv2Processor",
|
19 |
-
"resample": 2,
|
20 |
-
"size": {
|
21 |
-
"height": 224,
|
22 |
-
"width": 224
|
23 |
-
},
|
24 |
-
"tesseract_config": ""
|
25 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"apply_ocr",
|
8 |
+
"ocr_lang",
|
9 |
+
"tesseract_config",
|
10 |
+
"return_tensors",
|
11 |
+
"data_format",
|
12 |
+
"input_data_format"
|
13 |
+
],
|
14 |
+
"apply_ocr": true,
|
15 |
+
"do_resize": true,
|
16 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
17 |
+
"ocr_lang": null,
|
18 |
+
"processor_class": "LayoutLMv2Processor",
|
19 |
+
"resample": 2,
|
20 |
+
"size": {
|
21 |
+
"height": 224,
|
22 |
+
"width": 224
|
23 |
+
},
|
24 |
+
"tesseract_config": ""
|
25 |
+
}
|
special_tokens_map.json
CHANGED
@@ -1,37 +1,37 @@
|
|
1 |
-
{
|
2 |
-
"cls_token": {
|
3 |
-
"content": "[CLS]",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": false,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"mask_token": {
|
10 |
-
"content": "[MASK]",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"pad_token": {
|
17 |
-
"content": "[PAD]",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"sep_token": {
|
24 |
-
"content": "[SEP]",
|
25 |
-
"lstrip": false,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
},
|
30 |
-
"unk_token": {
|
31 |
-
"content": "[UNK]",
|
32 |
-
"lstrip": false,
|
33 |
-
"normalized": false,
|
34 |
-
"rstrip": false,
|
35 |
-
"single_word": false
|
36 |
-
}
|
37 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer_config.json
CHANGED
@@ -1,80 +1,80 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"0": {
|
4 |
-
"content": "[PAD]",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"100": {
|
12 |
-
"content": "[UNK]",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
},
|
19 |
-
"101": {
|
20 |
-
"content": "[CLS]",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false,
|
25 |
-
"special": true
|
26 |
-
},
|
27 |
-
"102": {
|
28 |
-
"content": "[SEP]",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": false,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
},
|
35 |
-
"103": {
|
36 |
-
"content": "[MASK]",
|
37 |
-
"lstrip": false,
|
38 |
-
"normalized": false,
|
39 |
-
"rstrip": false,
|
40 |
-
"single_word": false,
|
41 |
-
"special": true
|
42 |
-
}
|
43 |
-
},
|
44 |
-
"additional_special_tokens": [],
|
45 |
-
"apply_ocr": false,
|
46 |
-
"clean_up_tokenization_spaces": true,
|
47 |
-
"cls_token": "[CLS]",
|
48 |
-
"cls_token_box": [
|
49 |
-
0,
|
50 |
-
0,
|
51 |
-
0,
|
52 |
-
0
|
53 |
-
],
|
54 |
-
"do_basic_tokenize": true,
|
55 |
-
"do_lower_case": true,
|
56 |
-
"mask_token": "[MASK]",
|
57 |
-
"model_max_length": 512,
|
58 |
-
"never_split": null,
|
59 |
-
"only_label_first_subword": true,
|
60 |
-
"pad_token": "[PAD]",
|
61 |
-
"pad_token_box": [
|
62 |
-
0,
|
63 |
-
0,
|
64 |
-
0,
|
65 |
-
0
|
66 |
-
],
|
67 |
-
"pad_token_label": -100,
|
68 |
-
"processor_class": "LayoutLMv2Processor",
|
69 |
-
"sep_token": "[SEP]",
|
70 |
-
"sep_token_box": [
|
71 |
-
1000,
|
72 |
-
1000,
|
73 |
-
1000,
|
74 |
-
1000
|
75 |
-
],
|
76 |
-
"strip_accents": null,
|
77 |
-
"tokenize_chinese_chars": true,
|
78 |
-
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
-
"unk_token": "[UNK]"
|
80 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|