Benedict-L commited on
Commit
1eb21e6
·
verified ·
1 Parent(s): 84e13dc

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6782
21
- - Answer: {'precision': 0.694206008583691, 'recall': 0.799752781211372, 'f1': 0.7432510051694429, 'number': 809}
22
- - Header: {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119}
23
- - Question: {'precision': 0.769098712446352, 'recall': 0.8413145539906103, 'f1': 0.8035874439461884, 'number': 1065}
24
- - Overall Precision: 0.7117
25
- - Overall Recall: 0.7938
26
- - Overall F1: 0.7505
27
- - Overall Accuracy: 0.8017
28
 
29
  ## Model description
30
 
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.8074 | 1.0 | 10 | 1.5777 | {'precision': 0.03731343283582089, 'recall': 0.037082818294190356, 'f1': 0.037197768133911964, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.25181598062953997, 'recall': 0.19530516431924883, 'f1': 0.21998942358540455, 'number': 1065} | 0.1460 | 0.1194 | 0.1314 | 0.3680 |
60
- | 1.4231 | 2.0 | 20 | 1.2292 | {'precision': 0.24720068906115417, 'recall': 0.3547589616810878, 'f1': 0.29137055837563447, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4146341463414634, 'recall': 0.5906103286384976, 'f1': 0.4872192099147947, 'number': 1065} | 0.3420 | 0.4596 | 0.3922 | 0.6004 |
61
- | 1.0745 | 3.0 | 30 | 0.9226 | {'precision': 0.4796828543111992, 'recall': 0.5982694684796045, 'f1': 0.5324532453245325, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5457122608079377, 'recall': 0.7230046948356808, 'f1': 0.6219709208400647, 'number': 1065} | 0.5102 | 0.6292 | 0.5635 | 0.7057 |
62
- | 0.8254 | 4.0 | 40 | 0.7937 | {'precision': 0.569215876089061, 'recall': 0.7268232385661311, 'f1': 0.6384364820846906, 'number': 809} | {'precision': 0.1864406779661017, 'recall': 0.09243697478991597, 'f1': 0.12359550561797754, 'number': 119} | {'precision': 0.6400651465798045, 'recall': 0.7380281690140845, 'f1': 0.6855647623201047, 'number': 1065} | 0.5970 | 0.6949 | 0.6422 | 0.7517 |
63
- | 0.6703 | 5.0 | 50 | 0.7225 | {'precision': 0.6260162601626016, 'recall': 0.761433868974042, 'f1': 0.6871165644171779, 'number': 809} | {'precision': 0.2413793103448276, 'recall': 0.17647058823529413, 'f1': 0.2038834951456311, 'number': 119} | {'precision': 0.6737421383647799, 'recall': 0.8046948356807512, 'f1': 0.7334189131364998, 'number': 1065} | 0.6376 | 0.7496 | 0.6891 | 0.7784 |
64
- | 0.5723 | 6.0 | 60 | 0.6881 | {'precision': 0.6349206349206349, 'recall': 0.7911001236093943, 'f1': 0.7044578976334617, 'number': 809} | {'precision': 0.2127659574468085, 'recall': 0.16806722689075632, 'f1': 0.18779342723004694, 'number': 119} | {'precision': 0.7215081405312768, 'recall': 0.7906103286384977, 'f1': 0.7544802867383513, 'number': 1065} | 0.6620 | 0.7536 | 0.7048 | 0.7851 |
65
- | 0.4989 | 7.0 | 70 | 0.6636 | {'precision': 0.6565040650406504, 'recall': 0.7985166872682324, 'f1': 0.720580033463469, 'number': 809} | {'precision': 0.27, 'recall': 0.226890756302521, 'f1': 0.24657534246575347, 'number': 119} | {'precision': 0.7410636442894507, 'recall': 0.7981220657276995, 'f1': 0.7685352622061482, 'number': 1065} | 0.6827 | 0.7642 | 0.7211 | 0.7938 |
66
- | 0.4428 | 8.0 | 80 | 0.6578 | {'precision': 0.6629441624365482, 'recall': 0.8071693448702101, 'f1': 0.7279821627647713, 'number': 809} | {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119} | {'precision': 0.7472340425531915, 'recall': 0.8244131455399061, 'f1': 0.7839285714285714, 'number': 1065} | 0.6886 | 0.7832 | 0.7329 | 0.7947 |
67
- | 0.3904 | 9.0 | 90 | 0.6481 | {'precision': 0.6839872746553552, 'recall': 0.7972805933250927, 'f1': 0.7363013698630138, 'number': 809} | {'precision': 0.27927927927927926, 'recall': 0.2605042016806723, 'f1': 0.26956521739130435, 'number': 119} | {'precision': 0.7502081598667777, 'recall': 0.8460093896713615, 'f1': 0.795233892321271, 'number': 1065} | 0.6993 | 0.7913 | 0.7425 | 0.8017 |
68
- | 0.3817 | 10.0 | 100 | 0.6495 | {'precision': 0.6941176470588235, 'recall': 0.8022249690976514, 'f1': 0.7442660550458714, 'number': 809} | {'precision': 0.27049180327868855, 'recall': 0.2773109243697479, 'f1': 0.27385892116182575, 'number': 119} | {'precision': 0.7609630266552021, 'recall': 0.8309859154929577, 'f1': 0.7944344703770198, 'number': 1065} | 0.7059 | 0.7863 | 0.7439 | 0.8048 |
69
- | 0.3252 | 11.0 | 110 | 0.6711 | {'precision': 0.697452229299363, 'recall': 0.8121137206427689, 'f1': 0.750428326670474, 'number': 809} | {'precision': 0.29411764705882354, 'recall': 0.29411764705882354, 'f1': 0.29411764705882354, 'number': 119} | {'precision': 0.76592082616179, 'recall': 0.8356807511737089, 'f1': 0.7992815446789402, 'number': 1065} | 0.7117 | 0.7938 | 0.7505 | 0.7979 |
70
- | 0.3099 | 12.0 | 120 | 0.6680 | {'precision': 0.6943556975505857, 'recall': 0.8059332509270705, 'f1': 0.745995423340961, 'number': 809} | {'precision': 0.2966101694915254, 'recall': 0.29411764705882354, 'f1': 0.2953586497890296, 'number': 119} | {'precision': 0.7663793103448275, 'recall': 0.8347417840375587, 'f1': 0.7991011235955056, 'number': 1065} | 0.7109 | 0.7908 | 0.7487 | 0.8008 |
71
- | 0.2926 | 13.0 | 130 | 0.6750 | {'precision': 0.689727463312369, 'recall': 0.8133498145859085, 'f1': 0.7464549064095293, 'number': 809} | {'precision': 0.32142857142857145, 'recall': 0.3025210084033613, 'f1': 0.3116883116883117, 'number': 119} | {'precision': 0.7805944055944056, 'recall': 0.8384976525821596, 'f1': 0.8085106382978724, 'number': 1065} | 0.7181 | 0.7963 | 0.7552 | 0.8020 |
72
- | 0.2769 | 14.0 | 140 | 0.6757 | {'precision': 0.6956989247311828, 'recall': 0.799752781211372, 'f1': 0.7441058079355952, 'number': 809} | {'precision': 0.312, 'recall': 0.3277310924369748, 'f1': 0.31967213114754095, 'number': 119} | {'precision': 0.7677029360967185, 'recall': 0.8347417840375587, 'f1': 0.7998200629779576, 'number': 1065} | 0.7117 | 0.7903 | 0.7489 | 0.8024 |
73
- | 0.2743 | 15.0 | 150 | 0.6782 | {'precision': 0.694206008583691, 'recall': 0.799752781211372, 'f1': 0.7432510051694429, 'number': 809} | {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119} | {'precision': 0.769098712446352, 'recall': 0.8413145539906103, 'f1': 0.8035874439461884, 'number': 1065} | 0.7117 | 0.7938 | 0.7505 | 0.8017 |
74
 
75
 
76
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.6965
21
+ - Answer: {'precision': 0.7010869565217391, 'recall': 0.7972805933250927, 'f1': 0.746096009253904, 'number': 809}
22
+ - Header: {'precision': 0.3305785123966942, 'recall': 0.33613445378151263, 'f1': 0.33333333333333337, 'number': 119}
23
+ - Question: {'precision': 0.7692307692307693, 'recall': 0.8262910798122066, 'f1': 0.7967406066093254, 'number': 1065}
24
+ - Overall Precision: 0.7162
25
+ - Overall Recall: 0.7852
26
+ - Overall F1: 0.7492
27
+ - Overall Accuracy: 0.8006
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8343 | 1.0 | 10 | 1.5921 | {'precision': 0.006666666666666667, 'recall': 0.006180469715698393, 'f1': 0.006414368184733804, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.22067901234567902, 'recall': 0.13427230046948357, 'f1': 0.166958552247519, 'number': 1065} | 0.1059 | 0.0743 | 0.0873 | 0.3510 |
60
+ | 1.4828 | 2.0 | 20 | 1.2849 | {'precision': 0.2738799661876585, 'recall': 0.4004944375772559, 'f1': 0.32530120481927705, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.38058114812189936, 'recall': 0.504225352112676, 'f1': 0.43376413570274636, 'number': 1065} | 0.3314 | 0.4320 | 0.3751 | 0.5951 |
61
+ | 1.1444 | 3.0 | 30 | 0.9563 | {'precision': 0.4725897920604915, 'recall': 0.6180469715698393, 'f1': 0.5356186395286556, 'number': 809} | {'precision': 0.041666666666666664, 'recall': 0.01680672268907563, 'f1': 0.02395209580838323, 'number': 119} | {'precision': 0.5378020265003897, 'recall': 0.647887323943662, 'f1': 0.5877342419080069, 'number': 1065} | 0.4990 | 0.5981 | 0.5440 | 0.6955 |
62
+ | 0.8658 | 4.0 | 40 | 0.7885 | {'precision': 0.5757009345794393, 'recall': 0.761433868974042, 'f1': 0.6556679084619478, 'number': 809} | {'precision': 0.1388888888888889, 'recall': 0.08403361344537816, 'f1': 0.10471204188481677, 'number': 119} | {'precision': 0.6567299006323396, 'recall': 0.6826291079812207, 'f1': 0.6694290976058932, 'number': 1065} | 0.6016 | 0.6789 | 0.6379 | 0.7601 |
63
+ | 0.6833 | 5.0 | 50 | 0.7124 | {'precision': 0.64375, 'recall': 0.7639060568603214, 'f1': 0.6986998304126625, 'number': 809} | {'precision': 0.35, 'recall': 0.23529411764705882, 'f1': 0.28140703517587945, 'number': 119} | {'precision': 0.6729354047424366, 'recall': 0.7727699530516432, 'f1': 0.7194055944055944, 'number': 1065} | 0.6491 | 0.7371 | 0.6903 | 0.7810 |
64
+ | 0.5898 | 6.0 | 60 | 0.6874 | {'precision': 0.6227141482194418, 'recall': 0.799752781211372, 'f1': 0.7002164502164502, 'number': 809} | {'precision': 0.3411764705882353, 'recall': 0.24369747899159663, 'f1': 0.28431372549019607, 'number': 119} | {'precision': 0.7236492471213464, 'recall': 0.7671361502347418, 'f1': 0.7447584320875114, 'number': 1065} | 0.6627 | 0.7491 | 0.7033 | 0.7851 |
65
+ | 0.5126 | 7.0 | 70 | 0.6599 | {'precision': 0.6705632306057385, 'recall': 0.7799752781211372, 'f1': 0.7211428571428572, 'number': 809} | {'precision': 0.32673267326732675, 'recall': 0.2773109243697479, 'f1': 0.30000000000000004, 'number': 119} | {'precision': 0.7427821522309711, 'recall': 0.7971830985915493, 'f1': 0.7690217391304347, 'number': 1065} | 0.6924 | 0.7592 | 0.7243 | 0.7963 |
66
+ | 0.4534 | 8.0 | 80 | 0.6562 | {'precision': 0.670490093847758, 'recall': 0.7948084054388134, 'f1': 0.7273755656108597, 'number': 809} | {'precision': 0.2966101694915254, 'recall': 0.29411764705882354, 'f1': 0.2953586497890296, 'number': 119} | {'precision': 0.7476475620188195, 'recall': 0.8206572769953052, 'f1': 0.7824529991047449, 'number': 1065} | 0.6910 | 0.7787 | 0.7322 | 0.7954 |
67
+ | 0.3984 | 9.0 | 90 | 0.6561 | {'precision': 0.6838709677419355, 'recall': 0.7861557478368356, 'f1': 0.7314548591144335, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3025210084033613, 'f1': 0.3171806167400881, 'number': 119} | {'precision': 0.7555555555555555, 'recall': 0.8300469483568075, 'f1': 0.7910514541387024, 'number': 1065} | 0.7047 | 0.7807 | 0.7408 | 0.7986 |
68
+ | 0.3865 | 10.0 | 100 | 0.6673 | {'precision': 0.6877005347593583, 'recall': 0.7948084054388134, 'f1': 0.7373853211009175, 'number': 809} | {'precision': 0.31666666666666665, 'recall': 0.31932773109243695, 'f1': 0.3179916317991632, 'number': 119} | {'precision': 0.7613240418118467, 'recall': 0.8206572769953052, 'f1': 0.7898779936737461, 'number': 1065} | 0.7059 | 0.7802 | 0.7412 | 0.8019 |
69
+ | 0.3343 | 11.0 | 110 | 0.6761 | {'precision': 0.6853220696937699, 'recall': 0.8022249690976514, 'f1': 0.7391799544419134, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.7692307692307693, 'recall': 0.8262910798122066, 'f1': 0.7967406066093254, 'number': 1065} | 0.7110 | 0.7863 | 0.7467 | 0.7998 |
70
+ | 0.314 | 12.0 | 120 | 0.6772 | {'precision': 0.6989130434782609, 'recall': 0.7948084054388134, 'f1': 0.7437825332562175, 'number': 809} | {'precision': 0.34545454545454546, 'recall': 0.31932773109243695, 'f1': 0.3318777292576419, 'number': 119} | {'precision': 0.7698343504795118, 'recall': 0.8291079812206573, 'f1': 0.7983725135623869, 'number': 1065} | 0.7184 | 0.7847 | 0.7501 | 0.8053 |
71
+ | 0.3008 | 13.0 | 130 | 0.6878 | {'precision': 0.7048648648648649, 'recall': 0.8059332509270705, 'f1': 0.7520184544405998, 'number': 809} | {'precision': 0.33620689655172414, 'recall': 0.3277310924369748, 'f1': 0.33191489361702126, 'number': 119} | {'precision': 0.7689594356261023, 'recall': 0.8187793427230047, 'f1': 0.793087767166894, 'number': 1065} | 0.7186 | 0.7842 | 0.75 | 0.8033 |
72
+ | 0.2797 | 14.0 | 140 | 0.6948 | {'precision': 0.7027322404371584, 'recall': 0.7948084054388134, 'f1': 0.7459396751740139, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7661996497373029, 'recall': 0.8215962441314554, 'f1': 0.7929315813321249, 'number': 1065} | 0.7137 | 0.7817 | 0.7462 | 0.8017 |
73
+ | 0.2722 | 15.0 | 150 | 0.6965 | {'precision': 0.7010869565217391, 'recall': 0.7972805933250927, 'f1': 0.746096009253904, 'number': 809} | {'precision': 0.3305785123966942, 'recall': 0.33613445378151263, 'f1': 0.33333333333333337, 'number': 119} | {'precision': 0.7692307692307693, 'recall': 0.8262910798122066, 'f1': 0.7967406066093254, 'number': 1065} | 0.7162 | 0.7852 | 0.7492 | 0.8006 |
74
 
75
 
76
  ### Framework versions
logs/events.out.tfevents.1718871664.HCIDC-SV-DMZ-ORC-NODE02.3873225.6 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a8030a99effe44c8e1ff3bb76785aff08f5c4f6053d336442fa4d4714050ccf4
3
- size 12783
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd9a1ee4c04ea79141c13c21a6fb30375e8ac85ff39d561f50b593733c9393bc
3
+ size 15984
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bbedf6278e03eaf8bf912b59b8672d53ae2632229977cfab1255133306c07b19
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:407269bdfb61d5284f437311ec92ed06d968ffc4785fba24f120193f68a95329
3
  size 450558212
tokenizer.json CHANGED
@@ -1,21 +1,7 @@
1
  {
2
  "version": "1.0",
3
- "truncation": {
4
- "direction": "Right",
5
- "max_length": 512,
6
- "strategy": "LongestFirst",
7
- "stride": 0
8
- },
9
- "padding": {
10
- "strategy": {
11
- "Fixed": 512
12
- },
13
- "direction": "Right",
14
- "pad_to_multiple_of": null,
15
- "pad_id": 0,
16
- "pad_type_id": 0,
17
- "pad_token": "[PAD]"
18
- },
19
  "added_tokens": [
20
  {
21
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,