Benedict-L commited on
Commit
a8be15c
·
verified ·
1 Parent(s): 2e0c877

Training in progress, epoch 1

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6582
21
- - Answer: {'precision': 0.6929547844374343, 'recall': 0.8145859085290482, 'f1': 0.7488636363636364, 'number': 809}
22
- - Header: {'precision': 0.3050847457627119, 'recall': 0.3025210084033613, 'f1': 0.3037974683544304, 'number': 119}
23
- - Question: {'precision': 0.7621107266435986, 'recall': 0.8272300469483568, 'f1': 0.7933363349842413, 'number': 1065}
24
- - Overall Precision: 0.7083
25
- - Overall Recall: 0.7908
26
- - Overall F1: 0.7473
27
- - Overall Accuracy: 0.8124
28
 
29
  ## Model description
30
 
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.759 | 1.0 | 10 | 1.5816 | {'precision': 0.01859799713876967, 'recall': 0.016069221260815822, 'f1': 0.01724137931034483, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20221169036334913, 'recall': 0.12018779342723004, 'f1': 0.1507656065959953, 'number': 1065} | 0.1059 | 0.0707 | 0.0848 | 0.3558 |
60
- | 1.4623 | 2.0 | 20 | 1.2724 | {'precision': 0.20780711825487944, 'recall': 0.22373300370828184, 'f1': 0.21547619047619046, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.41998306519898393, 'recall': 0.46572769953051646, 'f1': 0.4416740872662512, 'number': 1065} | 0.3299 | 0.3397 | 0.3347 | 0.5858 |
61
- | 1.1305 | 3.0 | 30 | 0.9617 | {'precision': 0.44331210191082804, 'recall': 0.43016069221260816, 'f1': 0.4366373902132999, 'number': 809} | {'precision': 0.1111111111111111, 'recall': 0.03361344537815126, 'f1': 0.05161290322580645, 'number': 119} | {'precision': 0.6134868421052632, 'recall': 0.7004694835680751, 'f1': 0.6540990793511618, 'number': 1065} | 0.5390 | 0.5509 | 0.5449 | 0.6969 |
62
- | 0.865 | 4.0 | 40 | 0.7941 | {'precision': 0.6445916114790287, 'recall': 0.7218788627935723, 'f1': 0.6810495626822157, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.11764705882352941, 'f1': 0.16666666666666666, 'number': 119} | {'precision': 0.6923076923076923, 'recall': 0.7436619718309859, 'f1': 0.7170665459483929, 'number': 1065} | 0.6622 | 0.6974 | 0.6794 | 0.7551 |
63
- | 0.6881 | 5.0 | 50 | 0.7089 | {'precision': 0.6280041797283177, 'recall': 0.7428924598269468, 'f1': 0.680634201585504, 'number': 809} | {'precision': 0.2753623188405797, 'recall': 0.15966386554621848, 'f1': 0.20212765957446807, 'number': 119} | {'precision': 0.6679596586501164, 'recall': 0.8084507042253521, 'f1': 0.7315208156329652, 'number': 1065} | 0.6397 | 0.7431 | 0.6876 | 0.7760 |
64
- | 0.5841 | 6.0 | 60 | 0.6779 | {'precision': 0.6493775933609959, 'recall': 0.7737948084054388, 'f1': 0.7061477721376199, 'number': 809} | {'precision': 0.30434782608695654, 'recall': 0.17647058823529413, 'f1': 0.22340425531914895, 'number': 119} | {'precision': 0.7071547420965059, 'recall': 0.7981220657276995, 'f1': 0.7498897220996913, 'number': 1065} | 0.6698 | 0.7511 | 0.7081 | 0.7920 |
65
- | 0.5038 | 7.0 | 70 | 0.6612 | {'precision': 0.6738197424892703, 'recall': 0.7762669962917181, 'f1': 0.7214244686961515, 'number': 809} | {'precision': 0.25892857142857145, 'recall': 0.24369747899159663, 'f1': 0.2510822510822511, 'number': 119} | {'precision': 0.7261802575107296, 'recall': 0.7943661971830986, 'f1': 0.758744394618834, 'number': 1065} | 0.6804 | 0.7541 | 0.7154 | 0.7942 |
66
- | 0.4476 | 8.0 | 80 | 0.6504 | {'precision': 0.6548223350253807, 'recall': 0.7972805933250927, 'f1': 0.7190635451505016, 'number': 809} | {'precision': 0.25, 'recall': 0.2184873949579832, 'f1': 0.23318385650224216, 'number': 119} | {'precision': 0.7463706233988044, 'recall': 0.8206572769953052, 'f1': 0.7817531305903399, 'number': 1065} | 0.6836 | 0.7752 | 0.7265 | 0.7941 |
67
- | 0.3962 | 9.0 | 90 | 0.6375 | {'precision': 0.6781609195402298, 'recall': 0.8022249690976514, 'f1': 0.7349943374858438, 'number': 809} | {'precision': 0.2761904761904762, 'recall': 0.24369747899159663, 'f1': 0.2589285714285714, 'number': 119} | {'precision': 0.7482817869415808, 'recall': 0.8178403755868544, 'f1': 0.781516375056079, 'number': 1065} | 0.6959 | 0.7772 | 0.7343 | 0.8080 |
68
- | 0.3791 | 10.0 | 100 | 0.6459 | {'precision': 0.6928879310344828, 'recall': 0.7948084054388134, 'f1': 0.740356937248129, 'number': 809} | {'precision': 0.30357142857142855, 'recall': 0.2857142857142857, 'f1': 0.2943722943722944, 'number': 119} | {'precision': 0.7443037974683544, 'recall': 0.828169014084507, 'f1': 0.784, 'number': 1065} | 0.7007 | 0.7822 | 0.7392 | 0.8098 |
69
- | 0.328 | 11.0 | 110 | 0.6524 | {'precision': 0.6830543933054394, 'recall': 0.8071693448702101, 'f1': 0.739943342776204, 'number': 809} | {'precision': 0.2835820895522388, 'recall': 0.31932773109243695, 'f1': 0.30039525691699603, 'number': 119} | {'precision': 0.7478777589134126, 'recall': 0.8272300469483568, 'f1': 0.7855550601872493, 'number': 1065} | 0.6931 | 0.7888 | 0.7379 | 0.8050 |
70
- | 0.3164 | 12.0 | 120 | 0.6502 | {'precision': 0.6967741935483871, 'recall': 0.8009888751545118, 'f1': 0.7452558941920645, 'number': 809} | {'precision': 0.34951456310679613, 'recall': 0.3025210084033613, 'f1': 0.32432432432432434, 'number': 119} | {'precision': 0.7677475898334793, 'recall': 0.8225352112676056, 'f1': 0.7941976427923844, 'number': 1065} | 0.7176 | 0.7827 | 0.7487 | 0.8140 |
71
- | 0.301 | 13.0 | 130 | 0.6594 | {'precision': 0.6896918172157279, 'recall': 0.8022249690976514, 'f1': 0.7417142857142858, 'number': 809} | {'precision': 0.304, 'recall': 0.31932773109243695, 'f1': 0.31147540983606553, 'number': 119} | {'precision': 0.758147512864494, 'recall': 0.8300469483568075, 'f1': 0.7924697445091887, 'number': 1065} | 0.7039 | 0.7883 | 0.7437 | 0.8125 |
72
- | 0.2805 | 14.0 | 140 | 0.6586 | {'precision': 0.6912539515279241, 'recall': 0.8108776266996292, 'f1': 0.7463026166097838, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.3025210084033613, 'f1': 0.30508474576271183, 'number': 119} | {'precision': 0.7634315424610052, 'recall': 0.8272300469483568, 'f1': 0.7940513744930149, 'number': 1065} | 0.7086 | 0.7893 | 0.7467 | 0.8124 |
73
- | 0.2783 | 15.0 | 150 | 0.6582 | {'precision': 0.6929547844374343, 'recall': 0.8145859085290482, 'f1': 0.7488636363636364, 'number': 809} | {'precision': 0.3050847457627119, 'recall': 0.3025210084033613, 'f1': 0.3037974683544304, 'number': 119} | {'precision': 0.7621107266435986, 'recall': 0.8272300469483568, 'f1': 0.7933363349842413, 'number': 1065} | 0.7083 | 0.7908 | 0.7473 | 0.8124 |
74
 
75
 
76
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.6771
21
+ - Answer: {'precision': 0.7181719260065288, 'recall': 0.8158220024721878, 'f1': 0.7638888888888888, 'number': 809}
22
+ - Header: {'precision': 0.2867647058823529, 'recall': 0.3277310924369748, 'f1': 0.30588235294117644, 'number': 119}
23
+ - Question: {'precision': 0.7996406109613656, 'recall': 0.8356807511737089, 'f1': 0.8172635445362718, 'number': 1065}
24
+ - Overall Precision: 0.7329
25
+ - Overall Recall: 0.7973
26
+ - Overall F1: 0.7638
27
+ - Overall Accuracy: 0.8074
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8162 | 1.0 | 10 | 1.6077 | {'precision': 0.02144469525959368, 'recall': 0.023485784919653894, 'f1': 0.0224188790560472, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.21670702179176757, 'recall': 0.168075117370892, 'f1': 0.18931782125859334, 'number': 1065} | 0.1156 | 0.0993 | 0.1069 | 0.3690 |
60
+ | 1.456 | 2.0 | 20 | 1.2533 | {'precision': 0.16709844559585493, 'recall': 0.15945611866501855, 'f1': 0.1631878557874763, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4537037037037037, 'recall': 0.5521126760563381, 'f1': 0.4980940279542566, 'number': 1065} | 0.3467 | 0.3598 | 0.3531 | 0.5841 |
61
+ | 1.1159 | 3.0 | 30 | 0.9750 | {'precision': 0.46204620462046203, 'recall': 0.519159456118665, 'f1': 0.48894062863795107, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5617378048780488, 'recall': 0.692018779342723, 'f1': 0.6201093815734119, 'number': 1065} | 0.5170 | 0.5805 | 0.5469 | 0.6980 |
62
+ | 0.8586 | 4.0 | 40 | 0.8007 | {'precision': 0.5894941634241245, 'recall': 0.7490729295426453, 'f1': 0.6597713663581928, 'number': 809} | {'precision': 0.07017543859649122, 'recall': 0.03361344537815126, 'f1': 0.04545454545454545, 'number': 119} | {'precision': 0.658994032395567, 'recall': 0.7258215962441315, 'f1': 0.6907953529937445, 'number': 1065} | 0.6125 | 0.6939 | 0.6507 | 0.7498 |
63
+ | 0.6732 | 5.0 | 50 | 0.7143 | {'precision': 0.6391213389121339, 'recall': 0.7552533992583437, 'f1': 0.6923512747875353, 'number': 809} | {'precision': 0.11827956989247312, 'recall': 0.09243697478991597, 'f1': 0.10377358490566038, 'number': 119} | {'precision': 0.6695379796397808, 'recall': 0.8028169014084507, 'f1': 0.730145175064048, 'number': 1065} | 0.6350 | 0.7411 | 0.6840 | 0.7808 |
64
+ | 0.5697 | 6.0 | 60 | 0.6923 | {'precision': 0.6557711950970377, 'recall': 0.7935723114956736, 'f1': 0.7181208053691274, 'number': 809} | {'precision': 0.21052631578947367, 'recall': 0.16806722689075632, 'f1': 0.1869158878504673, 'number': 119} | {'precision': 0.7318777292576419, 'recall': 0.7868544600938967, 'f1': 0.758371040723982, 'number': 1065} | 0.6760 | 0.7526 | 0.7123 | 0.7869 |
65
+ | 0.4947 | 7.0 | 70 | 0.6645 | {'precision': 0.6886291179596175, 'recall': 0.8009888751545118, 'f1': 0.7405714285714285, 'number': 809} | {'precision': 0.2459016393442623, 'recall': 0.25210084033613445, 'f1': 0.24896265560165975, 'number': 119} | {'precision': 0.7497805092186128, 'recall': 0.8018779342723005, 'f1': 0.7749546279491834, 'number': 1065} | 0.6957 | 0.7687 | 0.7304 | 0.7950 |
66
+ | 0.4371 | 8.0 | 80 | 0.6554 | {'precision': 0.6950959488272921, 'recall': 0.8059332509270705, 'f1': 0.7464224384659416, 'number': 809} | {'precision': 0.22580645161290322, 'recall': 0.23529411764705882, 'f1': 0.23045267489711935, 'number': 119} | {'precision': 0.7470288624787776, 'recall': 0.8262910798122066, 'f1': 0.7846633972358449, 'number': 1065} | 0.6964 | 0.7827 | 0.7371 | 0.7999 |
67
+ | 0.3844 | 9.0 | 90 | 0.6466 | {'precision': 0.6878980891719745, 'recall': 0.8009888751545118, 'f1': 0.7401484865790977, 'number': 809} | {'precision': 0.24806201550387597, 'recall': 0.2689075630252101, 'f1': 0.25806451612903225, 'number': 119} | {'precision': 0.7504258943781942, 'recall': 0.8272300469483568, 'f1': 0.7869584635998212, 'number': 1065} | 0.6953 | 0.7832 | 0.7367 | 0.8057 |
68
+ | 0.3688 | 10.0 | 100 | 0.6478 | {'precision': 0.7040598290598291, 'recall': 0.8145859085290482, 'f1': 0.755300859598854, 'number': 809} | {'precision': 0.29365079365079366, 'recall': 0.31092436974789917, 'f1': 0.30204081632653057, 'number': 119} | {'precision': 0.7722513089005235, 'recall': 0.8309859154929577, 'f1': 0.8005427408412483, 'number': 1065} | 0.7160 | 0.7933 | 0.7527 | 0.8120 |
69
+ | 0.3157 | 11.0 | 110 | 0.6550 | {'precision': 0.7084673097534834, 'recall': 0.8170580964153276, 'f1': 0.758897818599311, 'number': 809} | {'precision': 0.2846153846153846, 'recall': 0.31092436974789917, 'f1': 0.29718875502008035, 'number': 119} | {'precision': 0.7736013986013986, 'recall': 0.8309859154929577, 'f1': 0.8012675418741513, 'number': 1065} | 0.7173 | 0.7943 | 0.7538 | 0.8059 |
70
+ | 0.2999 | 12.0 | 120 | 0.6654 | {'precision': 0.7153762268266085, 'recall': 0.8108776266996292, 'f1': 0.7601390498261876, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} | {'precision': 0.7864768683274022, 'recall': 0.8300469483568075, 'f1': 0.8076747373229787, 'number': 1065} | 0.7261 | 0.7928 | 0.7580 | 0.8108 |
71
+ | 0.2827 | 13.0 | 130 | 0.6687 | {'precision': 0.7092274678111588, 'recall': 0.8170580964153276, 'f1': 0.7593337162550259, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7857142857142857, 'recall': 0.8366197183098592, 'f1': 0.8103683492496588, 'number': 1065} | 0.7263 | 0.7988 | 0.7608 | 0.8104 |
72
+ | 0.2652 | 14.0 | 140 | 0.6735 | {'precision': 0.7138193688792165, 'recall': 0.8108776266996292, 'f1': 0.7592592592592592, 'number': 809} | {'precision': 0.28888888888888886, 'recall': 0.3277310924369748, 'f1': 0.3070866141732283, 'number': 119} | {'precision': 0.7883082373782108, 'recall': 0.8356807511737089, 'f1': 0.8113035551504102, 'number': 1065} | 0.7261 | 0.7953 | 0.7591 | 0.8063 |
73
+ | 0.2599 | 15.0 | 150 | 0.6771 | {'precision': 0.7181719260065288, 'recall': 0.8158220024721878, 'f1': 0.7638888888888888, 'number': 809} | {'precision': 0.2867647058823529, 'recall': 0.3277310924369748, 'f1': 0.30588235294117644, 'number': 119} | {'precision': 0.7996406109613656, 'recall': 0.8356807511737089, 'f1': 0.8172635445362718, 'number': 1065} | 0.7329 | 0.7973 | 0.7638 | 0.8074 |
74
 
75
 
76
  ### Framework versions
logs/events.out.tfevents.1719484096.HCIDC-SV-DMZ-ORC-NODE02.764170.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:713c4fd2d59b640010e7e05681abbc15078694739af144ecf110db0e989321bf
3
- size 13485
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c54308173c5e269c627fefc365989c820bad90a36ffdbf836d3f4ce0cef9a18
3
+ size 15984
logs/events.out.tfevents.1719554408.HCIDC-SV-DMZ-ORC-NODE02.2938141.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e52b94a70b3065891d8b96af73de586d767b30d92f425310f20bdcffd1d96f2
3
+ size 5763
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6714c7cab1135a5fcf798f30f32c190e16dd07d1e4ebf735a8a13b487e935870
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a6db757ba3926cc453115fd41c09ae6bfb625dd42958177ccd9af76ca07fcd0
3
  size 450558212