Training in progress, epoch 1
Browse files
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer
|
58 |
-
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6771
|
21 |
+
- Answer: {'precision': 0.7181719260065288, 'recall': 0.8158220024721878, 'f1': 0.7638888888888888, 'number': 809}
|
22 |
+
- Header: {'precision': 0.2867647058823529, 'recall': 0.3277310924369748, 'f1': 0.30588235294117644, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7996406109613656, 'recall': 0.8356807511737089, 'f1': 0.8172635445362718, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7329
|
25 |
+
- Overall Recall: 0.7973
|
26 |
+
- Overall F1: 0.7638
|
27 |
+
- Overall Accuracy: 0.8074
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.8162 | 1.0 | 10 | 1.6077 | {'precision': 0.02144469525959368, 'recall': 0.023485784919653894, 'f1': 0.0224188790560472, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.21670702179176757, 'recall': 0.168075117370892, 'f1': 0.18931782125859334, 'number': 1065} | 0.1156 | 0.0993 | 0.1069 | 0.3690 |
|
60 |
+
| 1.456 | 2.0 | 20 | 1.2533 | {'precision': 0.16709844559585493, 'recall': 0.15945611866501855, 'f1': 0.1631878557874763, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4537037037037037, 'recall': 0.5521126760563381, 'f1': 0.4980940279542566, 'number': 1065} | 0.3467 | 0.3598 | 0.3531 | 0.5841 |
|
61 |
+
| 1.1159 | 3.0 | 30 | 0.9750 | {'precision': 0.46204620462046203, 'recall': 0.519159456118665, 'f1': 0.48894062863795107, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5617378048780488, 'recall': 0.692018779342723, 'f1': 0.6201093815734119, 'number': 1065} | 0.5170 | 0.5805 | 0.5469 | 0.6980 |
|
62 |
+
| 0.8586 | 4.0 | 40 | 0.8007 | {'precision': 0.5894941634241245, 'recall': 0.7490729295426453, 'f1': 0.6597713663581928, 'number': 809} | {'precision': 0.07017543859649122, 'recall': 0.03361344537815126, 'f1': 0.04545454545454545, 'number': 119} | {'precision': 0.658994032395567, 'recall': 0.7258215962441315, 'f1': 0.6907953529937445, 'number': 1065} | 0.6125 | 0.6939 | 0.6507 | 0.7498 |
|
63 |
+
| 0.6732 | 5.0 | 50 | 0.7143 | {'precision': 0.6391213389121339, 'recall': 0.7552533992583437, 'f1': 0.6923512747875353, 'number': 809} | {'precision': 0.11827956989247312, 'recall': 0.09243697478991597, 'f1': 0.10377358490566038, 'number': 119} | {'precision': 0.6695379796397808, 'recall': 0.8028169014084507, 'f1': 0.730145175064048, 'number': 1065} | 0.6350 | 0.7411 | 0.6840 | 0.7808 |
|
64 |
+
| 0.5697 | 6.0 | 60 | 0.6923 | {'precision': 0.6557711950970377, 'recall': 0.7935723114956736, 'f1': 0.7181208053691274, 'number': 809} | {'precision': 0.21052631578947367, 'recall': 0.16806722689075632, 'f1': 0.1869158878504673, 'number': 119} | {'precision': 0.7318777292576419, 'recall': 0.7868544600938967, 'f1': 0.758371040723982, 'number': 1065} | 0.6760 | 0.7526 | 0.7123 | 0.7869 |
|
65 |
+
| 0.4947 | 7.0 | 70 | 0.6645 | {'precision': 0.6886291179596175, 'recall': 0.8009888751545118, 'f1': 0.7405714285714285, 'number': 809} | {'precision': 0.2459016393442623, 'recall': 0.25210084033613445, 'f1': 0.24896265560165975, 'number': 119} | {'precision': 0.7497805092186128, 'recall': 0.8018779342723005, 'f1': 0.7749546279491834, 'number': 1065} | 0.6957 | 0.7687 | 0.7304 | 0.7950 |
|
66 |
+
| 0.4371 | 8.0 | 80 | 0.6554 | {'precision': 0.6950959488272921, 'recall': 0.8059332509270705, 'f1': 0.7464224384659416, 'number': 809} | {'precision': 0.22580645161290322, 'recall': 0.23529411764705882, 'f1': 0.23045267489711935, 'number': 119} | {'precision': 0.7470288624787776, 'recall': 0.8262910798122066, 'f1': 0.7846633972358449, 'number': 1065} | 0.6964 | 0.7827 | 0.7371 | 0.7999 |
|
67 |
+
| 0.3844 | 9.0 | 90 | 0.6466 | {'precision': 0.6878980891719745, 'recall': 0.8009888751545118, 'f1': 0.7401484865790977, 'number': 809} | {'precision': 0.24806201550387597, 'recall': 0.2689075630252101, 'f1': 0.25806451612903225, 'number': 119} | {'precision': 0.7504258943781942, 'recall': 0.8272300469483568, 'f1': 0.7869584635998212, 'number': 1065} | 0.6953 | 0.7832 | 0.7367 | 0.8057 |
|
68 |
+
| 0.3688 | 10.0 | 100 | 0.6478 | {'precision': 0.7040598290598291, 'recall': 0.8145859085290482, 'f1': 0.755300859598854, 'number': 809} | {'precision': 0.29365079365079366, 'recall': 0.31092436974789917, 'f1': 0.30204081632653057, 'number': 119} | {'precision': 0.7722513089005235, 'recall': 0.8309859154929577, 'f1': 0.8005427408412483, 'number': 1065} | 0.7160 | 0.7933 | 0.7527 | 0.8120 |
|
69 |
+
| 0.3157 | 11.0 | 110 | 0.6550 | {'precision': 0.7084673097534834, 'recall': 0.8170580964153276, 'f1': 0.758897818599311, 'number': 809} | {'precision': 0.2846153846153846, 'recall': 0.31092436974789917, 'f1': 0.29718875502008035, 'number': 119} | {'precision': 0.7736013986013986, 'recall': 0.8309859154929577, 'f1': 0.8012675418741513, 'number': 1065} | 0.7173 | 0.7943 | 0.7538 | 0.8059 |
|
70 |
+
| 0.2999 | 12.0 | 120 | 0.6654 | {'precision': 0.7153762268266085, 'recall': 0.8108776266996292, 'f1': 0.7601390498261876, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} | {'precision': 0.7864768683274022, 'recall': 0.8300469483568075, 'f1': 0.8076747373229787, 'number': 1065} | 0.7261 | 0.7928 | 0.7580 | 0.8108 |
|
71 |
+
| 0.2827 | 13.0 | 130 | 0.6687 | {'precision': 0.7092274678111588, 'recall': 0.8170580964153276, 'f1': 0.7593337162550259, 'number': 809} | {'precision': 0.31746031746031744, 'recall': 0.33613445378151263, 'f1': 0.32653061224489793, 'number': 119} | {'precision': 0.7857142857142857, 'recall': 0.8366197183098592, 'f1': 0.8103683492496588, 'number': 1065} | 0.7263 | 0.7988 | 0.7608 | 0.8104 |
|
72 |
+
| 0.2652 | 14.0 | 140 | 0.6735 | {'precision': 0.7138193688792165, 'recall': 0.8108776266996292, 'f1': 0.7592592592592592, 'number': 809} | {'precision': 0.28888888888888886, 'recall': 0.3277310924369748, 'f1': 0.3070866141732283, 'number': 119} | {'precision': 0.7883082373782108, 'recall': 0.8356807511737089, 'f1': 0.8113035551504102, 'number': 1065} | 0.7261 | 0.7953 | 0.7591 | 0.8063 |
|
73 |
+
| 0.2599 | 15.0 | 150 | 0.6771 | {'precision': 0.7181719260065288, 'recall': 0.8158220024721878, 'f1': 0.7638888888888888, 'number': 809} | {'precision': 0.2867647058823529, 'recall': 0.3277310924369748, 'f1': 0.30588235294117644, 'number': 119} | {'precision': 0.7996406109613656, 'recall': 0.8356807511737089, 'f1': 0.8172635445362718, 'number': 1065} | 0.7329 | 0.7973 | 0.7638 | 0.8074 |
|
74 |
|
75 |
|
76 |
### Framework versions
|
logs/events.out.tfevents.1719484096.HCIDC-SV-DMZ-ORC-NODE02.764170.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c54308173c5e269c627fefc365989c820bad90a36ffdbf836d3f4ce0cef9a18
|
3 |
+
size 15984
|
logs/events.out.tfevents.1719554408.HCIDC-SV-DMZ-ORC-NODE02.2938141.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e52b94a70b3065891d8b96af73de586d767b30d92f425310f20bdcffd1d96f2
|
3 |
+
size 5763
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a6db757ba3926cc453115fd41c09ae6bfb625dd42958177ccd9af76ca07fcd0
|
3 |
size 450558212
|