BenevolenceMessiah commited on
Commit
4c8d484
·
verified ·
1 Parent(s): eb77faa

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2547 -0
README.md ADDED
@@ -0,0 +1,2547 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - mteb
8
+ - transformers
9
+ - transformers.js
10
+ - llama-cpp
11
+ - gguf-my-repo
12
+ license: apache-2.0
13
+ language:
14
+ - en
15
+ base_model: nomic-ai/nomic-embed-text-v1.5
16
+ model-index:
17
+ - name: epoch_0_model
18
+ results:
19
+ - task:
20
+ type: Classification
21
+ dataset:
22
+ name: MTEB AmazonCounterfactualClassification (en)
23
+ type: mteb/amazon_counterfactual
24
+ config: en
25
+ split: test
26
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
27
+ metrics:
28
+ - type: accuracy
29
+ value: 75.20895522388058
30
+ - type: ap
31
+ value: 38.57605549557802
32
+ - type: f1
33
+ value: 69.35586565857854
34
+ - task:
35
+ type: Classification
36
+ dataset:
37
+ name: MTEB AmazonPolarityClassification
38
+ type: mteb/amazon_polarity
39
+ config: default
40
+ split: test
41
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
42
+ metrics:
43
+ - type: accuracy
44
+ value: 91.8144
45
+ - type: ap
46
+ value: 88.65222882032363
47
+ - type: f1
48
+ value: 91.80426301643274
49
+ - task:
50
+ type: Classification
51
+ dataset:
52
+ name: MTEB AmazonReviewsClassification (en)
53
+ type: mteb/amazon_reviews_multi
54
+ config: en
55
+ split: test
56
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
57
+ metrics:
58
+ - type: accuracy
59
+ value: 47.162000000000006
60
+ - type: f1
61
+ value: 46.59329642263158
62
+ - task:
63
+ type: Retrieval
64
+ dataset:
65
+ name: MTEB ArguAna
66
+ type: arguana
67
+ config: default
68
+ split: test
69
+ revision: None
70
+ metrics:
71
+ - type: map_at_1
72
+ value: 24.253
73
+ - type: map_at_10
74
+ value: 38.962
75
+ - type: map_at_100
76
+ value: 40.081
77
+ - type: map_at_1000
78
+ value: 40.089000000000006
79
+ - type: map_at_3
80
+ value: 33.499
81
+ - type: map_at_5
82
+ value: 36.351
83
+ - type: mrr_at_1
84
+ value: 24.609
85
+ - type: mrr_at_10
86
+ value: 39.099000000000004
87
+ - type: mrr_at_100
88
+ value: 40.211000000000006
89
+ - type: mrr_at_1000
90
+ value: 40.219
91
+ - type: mrr_at_3
92
+ value: 33.677
93
+ - type: mrr_at_5
94
+ value: 36.469
95
+ - type: ndcg_at_1
96
+ value: 24.253
97
+ - type: ndcg_at_10
98
+ value: 48.010999999999996
99
+ - type: ndcg_at_100
100
+ value: 52.756
101
+ - type: ndcg_at_1000
102
+ value: 52.964999999999996
103
+ - type: ndcg_at_3
104
+ value: 36.564
105
+ - type: ndcg_at_5
106
+ value: 41.711999999999996
107
+ - type: precision_at_1
108
+ value: 24.253
109
+ - type: precision_at_10
110
+ value: 7.738
111
+ - type: precision_at_100
112
+ value: 0.98
113
+ - type: precision_at_1000
114
+ value: 0.1
115
+ - type: precision_at_3
116
+ value: 15.149000000000001
117
+ - type: precision_at_5
118
+ value: 11.593
119
+ - type: recall_at_1
120
+ value: 24.253
121
+ - type: recall_at_10
122
+ value: 77.383
123
+ - type: recall_at_100
124
+ value: 98.009
125
+ - type: recall_at_1000
126
+ value: 99.644
127
+ - type: recall_at_3
128
+ value: 45.448
129
+ - type: recall_at_5
130
+ value: 57.965999999999994
131
+ - task:
132
+ type: Clustering
133
+ dataset:
134
+ name: MTEB ArxivClusteringP2P
135
+ type: mteb/arxiv-clustering-p2p
136
+ config: default
137
+ split: test
138
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
139
+ metrics:
140
+ - type: v_measure
141
+ value: 45.69069567851087
142
+ - task:
143
+ type: Clustering
144
+ dataset:
145
+ name: MTEB ArxivClusteringS2S
146
+ type: mteb/arxiv-clustering-s2s
147
+ config: default
148
+ split: test
149
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
150
+ metrics:
151
+ - type: v_measure
152
+ value: 36.35185490976283
153
+ - task:
154
+ type: Reranking
155
+ dataset:
156
+ name: MTEB AskUbuntuDupQuestions
157
+ type: mteb/askubuntudupquestions-reranking
158
+ config: default
159
+ split: test
160
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
161
+ metrics:
162
+ - type: map
163
+ value: 61.71274951450321
164
+ - type: mrr
165
+ value: 76.06032625423207
166
+ - task:
167
+ type: STS
168
+ dataset:
169
+ name: MTEB BIOSSES
170
+ type: mteb/biosses-sts
171
+ config: default
172
+ split: test
173
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
174
+ metrics:
175
+ - type: cos_sim_pearson
176
+ value: 86.73980520022269
177
+ - type: cos_sim_spearman
178
+ value: 84.24649792685918
179
+ - type: euclidean_pearson
180
+ value: 85.85197641158186
181
+ - type: euclidean_spearman
182
+ value: 84.24649792685918
183
+ - type: manhattan_pearson
184
+ value: 86.26809552711346
185
+ - type: manhattan_spearman
186
+ value: 84.56397504030865
187
+ - task:
188
+ type: Classification
189
+ dataset:
190
+ name: MTEB Banking77Classification
191
+ type: mteb/banking77
192
+ config: default
193
+ split: test
194
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
195
+ metrics:
196
+ - type: accuracy
197
+ value: 84.25324675324674
198
+ - type: f1
199
+ value: 84.17872280892557
200
+ - task:
201
+ type: Clustering
202
+ dataset:
203
+ name: MTEB BiorxivClusteringP2P
204
+ type: mteb/biorxiv-clustering-p2p
205
+ config: default
206
+ split: test
207
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
208
+ metrics:
209
+ - type: v_measure
210
+ value: 38.770253446400886
211
+ - task:
212
+ type: Clustering
213
+ dataset:
214
+ name: MTEB BiorxivClusteringS2S
215
+ type: mteb/biorxiv-clustering-s2s
216
+ config: default
217
+ split: test
218
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
219
+ metrics:
220
+ - type: v_measure
221
+ value: 32.94307095497281
222
+ - task:
223
+ type: Retrieval
224
+ dataset:
225
+ name: MTEB CQADupstackAndroidRetrieval
226
+ type: BeIR/cqadupstack
227
+ config: default
228
+ split: test
229
+ revision: None
230
+ metrics:
231
+ - type: map_at_1
232
+ value: 32.164
233
+ - type: map_at_10
234
+ value: 42.641
235
+ - type: map_at_100
236
+ value: 43.947
237
+ - type: map_at_1000
238
+ value: 44.074999999999996
239
+ - type: map_at_3
240
+ value: 39.592
241
+ - type: map_at_5
242
+ value: 41.204
243
+ - type: mrr_at_1
244
+ value: 39.628
245
+ - type: mrr_at_10
246
+ value: 48.625
247
+ - type: mrr_at_100
248
+ value: 49.368
249
+ - type: mrr_at_1000
250
+ value: 49.413000000000004
251
+ - type: mrr_at_3
252
+ value: 46.400000000000006
253
+ - type: mrr_at_5
254
+ value: 47.68
255
+ - type: ndcg_at_1
256
+ value: 39.628
257
+ - type: ndcg_at_10
258
+ value: 48.564
259
+ - type: ndcg_at_100
260
+ value: 53.507000000000005
261
+ - type: ndcg_at_1000
262
+ value: 55.635999999999996
263
+ - type: ndcg_at_3
264
+ value: 44.471
265
+ - type: ndcg_at_5
266
+ value: 46.137
267
+ - type: precision_at_1
268
+ value: 39.628
269
+ - type: precision_at_10
270
+ value: 8.856
271
+ - type: precision_at_100
272
+ value: 1.429
273
+ - type: precision_at_1000
274
+ value: 0.191
275
+ - type: precision_at_3
276
+ value: 21.268
277
+ - type: precision_at_5
278
+ value: 14.649000000000001
279
+ - type: recall_at_1
280
+ value: 32.164
281
+ - type: recall_at_10
282
+ value: 59.609
283
+ - type: recall_at_100
284
+ value: 80.521
285
+ - type: recall_at_1000
286
+ value: 94.245
287
+ - type: recall_at_3
288
+ value: 46.521
289
+ - type: recall_at_5
290
+ value: 52.083999999999996
291
+ - type: map_at_1
292
+ value: 31.526
293
+ - type: map_at_10
294
+ value: 41.581
295
+ - type: map_at_100
296
+ value: 42.815999999999995
297
+ - type: map_at_1000
298
+ value: 42.936
299
+ - type: map_at_3
300
+ value: 38.605000000000004
301
+ - type: map_at_5
302
+ value: 40.351
303
+ - type: mrr_at_1
304
+ value: 39.489999999999995
305
+ - type: mrr_at_10
306
+ value: 47.829
307
+ - type: mrr_at_100
308
+ value: 48.512
309
+ - type: mrr_at_1000
310
+ value: 48.552
311
+ - type: mrr_at_3
312
+ value: 45.754
313
+ - type: mrr_at_5
314
+ value: 46.986
315
+ - type: ndcg_at_1
316
+ value: 39.489999999999995
317
+ - type: ndcg_at_10
318
+ value: 47.269
319
+ - type: ndcg_at_100
320
+ value: 51.564
321
+ - type: ndcg_at_1000
322
+ value: 53.53099999999999
323
+ - type: ndcg_at_3
324
+ value: 43.301
325
+ - type: ndcg_at_5
326
+ value: 45.239000000000004
327
+ - type: precision_at_1
328
+ value: 39.489999999999995
329
+ - type: precision_at_10
330
+ value: 8.93
331
+ - type: precision_at_100
332
+ value: 1.415
333
+ - type: precision_at_1000
334
+ value: 0.188
335
+ - type: precision_at_3
336
+ value: 20.892
337
+ - type: precision_at_5
338
+ value: 14.865999999999998
339
+ - type: recall_at_1
340
+ value: 31.526
341
+ - type: recall_at_10
342
+ value: 56.76
343
+ - type: recall_at_100
344
+ value: 75.029
345
+ - type: recall_at_1000
346
+ value: 87.491
347
+ - type: recall_at_3
348
+ value: 44.786
349
+ - type: recall_at_5
350
+ value: 50.254
351
+ - type: map_at_1
352
+ value: 40.987
353
+ - type: map_at_10
354
+ value: 52.827
355
+ - type: map_at_100
356
+ value: 53.751000000000005
357
+ - type: map_at_1000
358
+ value: 53.81
359
+ - type: map_at_3
360
+ value: 49.844
361
+ - type: map_at_5
362
+ value: 51.473
363
+ - type: mrr_at_1
364
+ value: 46.833999999999996
365
+ - type: mrr_at_10
366
+ value: 56.389
367
+ - type: mrr_at_100
368
+ value: 57.003
369
+ - type: mrr_at_1000
370
+ value: 57.034
371
+ - type: mrr_at_3
372
+ value: 54.17999999999999
373
+ - type: mrr_at_5
374
+ value: 55.486999999999995
375
+ - type: ndcg_at_1
376
+ value: 46.833999999999996
377
+ - type: ndcg_at_10
378
+ value: 58.372
379
+ - type: ndcg_at_100
380
+ value: 62.068
381
+ - type: ndcg_at_1000
382
+ value: 63.288
383
+ - type: ndcg_at_3
384
+ value: 53.400000000000006
385
+ - type: ndcg_at_5
386
+ value: 55.766000000000005
387
+ - type: precision_at_1
388
+ value: 46.833999999999996
389
+ - type: precision_at_10
390
+ value: 9.191
391
+ - type: precision_at_100
392
+ value: 1.192
393
+ - type: precision_at_1000
394
+ value: 0.134
395
+ - type: precision_at_3
396
+ value: 23.448
397
+ - type: precision_at_5
398
+ value: 15.862000000000002
399
+ - type: recall_at_1
400
+ value: 40.987
401
+ - type: recall_at_10
402
+ value: 71.146
403
+ - type: recall_at_100
404
+ value: 87.035
405
+ - type: recall_at_1000
406
+ value: 95.633
407
+ - type: recall_at_3
408
+ value: 58.025999999999996
409
+ - type: recall_at_5
410
+ value: 63.815999999999995
411
+ - type: map_at_1
412
+ value: 24.587
413
+ - type: map_at_10
414
+ value: 33.114
415
+ - type: map_at_100
416
+ value: 34.043
417
+ - type: map_at_1000
418
+ value: 34.123999999999995
419
+ - type: map_at_3
420
+ value: 30.45
421
+ - type: map_at_5
422
+ value: 31.813999999999997
423
+ - type: mrr_at_1
424
+ value: 26.554
425
+ - type: mrr_at_10
426
+ value: 35.148
427
+ - type: mrr_at_100
428
+ value: 35.926
429
+ - type: mrr_at_1000
430
+ value: 35.991
431
+ - type: mrr_at_3
432
+ value: 32.599000000000004
433
+ - type: mrr_at_5
434
+ value: 33.893
435
+ - type: ndcg_at_1
436
+ value: 26.554
437
+ - type: ndcg_at_10
438
+ value: 38.132
439
+ - type: ndcg_at_100
440
+ value: 42.78
441
+ - type: ndcg_at_1000
442
+ value: 44.919
443
+ - type: ndcg_at_3
444
+ value: 32.833
445
+ - type: ndcg_at_5
446
+ value: 35.168
447
+ - type: precision_at_1
448
+ value: 26.554
449
+ - type: precision_at_10
450
+ value: 5.921
451
+ - type: precision_at_100
452
+ value: 0.8659999999999999
453
+ - type: precision_at_1000
454
+ value: 0.109
455
+ - type: precision_at_3
456
+ value: 13.861
457
+ - type: precision_at_5
458
+ value: 9.605
459
+ - type: recall_at_1
460
+ value: 24.587
461
+ - type: recall_at_10
462
+ value: 51.690000000000005
463
+ - type: recall_at_100
464
+ value: 73.428
465
+ - type: recall_at_1000
466
+ value: 89.551
467
+ - type: recall_at_3
468
+ value: 37.336999999999996
469
+ - type: recall_at_5
470
+ value: 43.047000000000004
471
+ - type: map_at_1
472
+ value: 16.715
473
+ - type: map_at_10
474
+ value: 24.251
475
+ - type: map_at_100
476
+ value: 25.326999999999998
477
+ - type: map_at_1000
478
+ value: 25.455
479
+ - type: map_at_3
480
+ value: 21.912000000000003
481
+ - type: map_at_5
482
+ value: 23.257
483
+ - type: mrr_at_1
484
+ value: 20.274
485
+ - type: mrr_at_10
486
+ value: 28.552
487
+ - type: mrr_at_100
488
+ value: 29.42
489
+ - type: mrr_at_1000
490
+ value: 29.497
491
+ - type: mrr_at_3
492
+ value: 26.14
493
+ - type: mrr_at_5
494
+ value: 27.502
495
+ - type: ndcg_at_1
496
+ value: 20.274
497
+ - type: ndcg_at_10
498
+ value: 29.088
499
+ - type: ndcg_at_100
500
+ value: 34.293
501
+ - type: ndcg_at_1000
502
+ value: 37.271
503
+ - type: ndcg_at_3
504
+ value: 24.708
505
+ - type: ndcg_at_5
506
+ value: 26.809
507
+ - type: precision_at_1
508
+ value: 20.274
509
+ - type: precision_at_10
510
+ value: 5.361
511
+ - type: precision_at_100
512
+ value: 0.915
513
+ - type: precision_at_1000
514
+ value: 0.13
515
+ - type: precision_at_3
516
+ value: 11.733
517
+ - type: precision_at_5
518
+ value: 8.556999999999999
519
+ - type: recall_at_1
520
+ value: 16.715
521
+ - type: recall_at_10
522
+ value: 39.587
523
+ - type: recall_at_100
524
+ value: 62.336000000000006
525
+ - type: recall_at_1000
526
+ value: 83.453
527
+ - type: recall_at_3
528
+ value: 27.839999999999996
529
+ - type: recall_at_5
530
+ value: 32.952999999999996
531
+ - type: map_at_1
532
+ value: 28.793000000000003
533
+ - type: map_at_10
534
+ value: 38.582
535
+ - type: map_at_100
536
+ value: 39.881
537
+ - type: map_at_1000
538
+ value: 39.987
539
+ - type: map_at_3
540
+ value: 35.851
541
+ - type: map_at_5
542
+ value: 37.289
543
+ - type: mrr_at_1
544
+ value: 34.455999999999996
545
+ - type: mrr_at_10
546
+ value: 43.909
547
+ - type: mrr_at_100
548
+ value: 44.74
549
+ - type: mrr_at_1000
550
+ value: 44.786
551
+ - type: mrr_at_3
552
+ value: 41.659
553
+ - type: mrr_at_5
554
+ value: 43.010999999999996
555
+ - type: ndcg_at_1
556
+ value: 34.455999999999996
557
+ - type: ndcg_at_10
558
+ value: 44.266
559
+ - type: ndcg_at_100
560
+ value: 49.639
561
+ - type: ndcg_at_1000
562
+ value: 51.644
563
+ - type: ndcg_at_3
564
+ value: 39.865
565
+ - type: ndcg_at_5
566
+ value: 41.887
567
+ - type: precision_at_1
568
+ value: 34.455999999999996
569
+ - type: precision_at_10
570
+ value: 7.843999999999999
571
+ - type: precision_at_100
572
+ value: 1.243
573
+ - type: precision_at_1000
574
+ value: 0.158
575
+ - type: precision_at_3
576
+ value: 18.831999999999997
577
+ - type: precision_at_5
578
+ value: 13.147
579
+ - type: recall_at_1
580
+ value: 28.793000000000003
581
+ - type: recall_at_10
582
+ value: 55.68300000000001
583
+ - type: recall_at_100
584
+ value: 77.99000000000001
585
+ - type: recall_at_1000
586
+ value: 91.183
587
+ - type: recall_at_3
588
+ value: 43.293
589
+ - type: recall_at_5
590
+ value: 48.618
591
+ - type: map_at_1
592
+ value: 25.907000000000004
593
+ - type: map_at_10
594
+ value: 35.519
595
+ - type: map_at_100
596
+ value: 36.806
597
+ - type: map_at_1000
598
+ value: 36.912
599
+ - type: map_at_3
600
+ value: 32.748
601
+ - type: map_at_5
602
+ value: 34.232
603
+ - type: mrr_at_1
604
+ value: 31.621
605
+ - type: mrr_at_10
606
+ value: 40.687
607
+ - type: mrr_at_100
608
+ value: 41.583
609
+ - type: mrr_at_1000
610
+ value: 41.638999999999996
611
+ - type: mrr_at_3
612
+ value: 38.527
613
+ - type: mrr_at_5
614
+ value: 39.612
615
+ - type: ndcg_at_1
616
+ value: 31.621
617
+ - type: ndcg_at_10
618
+ value: 41.003
619
+ - type: ndcg_at_100
620
+ value: 46.617999999999995
621
+ - type: ndcg_at_1000
622
+ value: 48.82
623
+ - type: ndcg_at_3
624
+ value: 36.542
625
+ - type: ndcg_at_5
626
+ value: 38.368
627
+ - type: precision_at_1
628
+ value: 31.621
629
+ - type: precision_at_10
630
+ value: 7.396999999999999
631
+ - type: precision_at_100
632
+ value: 1.191
633
+ - type: precision_at_1000
634
+ value: 0.153
635
+ - type: precision_at_3
636
+ value: 17.39
637
+ - type: precision_at_5
638
+ value: 12.1
639
+ - type: recall_at_1
640
+ value: 25.907000000000004
641
+ - type: recall_at_10
642
+ value: 52.115
643
+ - type: recall_at_100
644
+ value: 76.238
645
+ - type: recall_at_1000
646
+ value: 91.218
647
+ - type: recall_at_3
648
+ value: 39.417
649
+ - type: recall_at_5
650
+ value: 44.435
651
+ - type: map_at_1
652
+ value: 25.732166666666668
653
+ - type: map_at_10
654
+ value: 34.51616666666667
655
+ - type: map_at_100
656
+ value: 35.67241666666666
657
+ - type: map_at_1000
658
+ value: 35.78675
659
+ - type: map_at_3
660
+ value: 31.953416666666662
661
+ - type: map_at_5
662
+ value: 33.333
663
+ - type: mrr_at_1
664
+ value: 30.300166666666673
665
+ - type: mrr_at_10
666
+ value: 38.6255
667
+ - type: mrr_at_100
668
+ value: 39.46183333333334
669
+ - type: mrr_at_1000
670
+ value: 39.519999999999996
671
+ - type: mrr_at_3
672
+ value: 36.41299999999999
673
+ - type: mrr_at_5
674
+ value: 37.6365
675
+ - type: ndcg_at_1
676
+ value: 30.300166666666673
677
+ - type: ndcg_at_10
678
+ value: 39.61466666666667
679
+ - type: ndcg_at_100
680
+ value: 44.60808333333334
681
+ - type: ndcg_at_1000
682
+ value: 46.91708333333334
683
+ - type: ndcg_at_3
684
+ value: 35.26558333333333
685
+ - type: ndcg_at_5
686
+ value: 37.220000000000006
687
+ - type: precision_at_1
688
+ value: 30.300166666666673
689
+ - type: precision_at_10
690
+ value: 6.837416666666667
691
+ - type: precision_at_100
692
+ value: 1.10425
693
+ - type: precision_at_1000
694
+ value: 0.14875
695
+ - type: precision_at_3
696
+ value: 16.13716666666667
697
+ - type: precision_at_5
698
+ value: 11.2815
699
+ - type: recall_at_1
700
+ value: 25.732166666666668
701
+ - type: recall_at_10
702
+ value: 50.578916666666665
703
+ - type: recall_at_100
704
+ value: 72.42183333333334
705
+ - type: recall_at_1000
706
+ value: 88.48766666666667
707
+ - type: recall_at_3
708
+ value: 38.41325
709
+ - type: recall_at_5
710
+ value: 43.515750000000004
711
+ - type: map_at_1
712
+ value: 23.951
713
+ - type: map_at_10
714
+ value: 30.974
715
+ - type: map_at_100
716
+ value: 31.804
717
+ - type: map_at_1000
718
+ value: 31.900000000000002
719
+ - type: map_at_3
720
+ value: 28.762
721
+ - type: map_at_5
722
+ value: 29.94
723
+ - type: mrr_at_1
724
+ value: 26.534000000000002
725
+ - type: mrr_at_10
726
+ value: 33.553
727
+ - type: mrr_at_100
728
+ value: 34.297
729
+ - type: mrr_at_1000
730
+ value: 34.36
731
+ - type: mrr_at_3
732
+ value: 31.391000000000002
733
+ - type: mrr_at_5
734
+ value: 32.525999999999996
735
+ - type: ndcg_at_1
736
+ value: 26.534000000000002
737
+ - type: ndcg_at_10
738
+ value: 35.112
739
+ - type: ndcg_at_100
740
+ value: 39.28
741
+ - type: ndcg_at_1000
742
+ value: 41.723
743
+ - type: ndcg_at_3
744
+ value: 30.902
745
+ - type: ndcg_at_5
746
+ value: 32.759
747
+ - type: precision_at_1
748
+ value: 26.534000000000002
749
+ - type: precision_at_10
750
+ value: 5.445
751
+ - type: precision_at_100
752
+ value: 0.819
753
+ - type: precision_at_1000
754
+ value: 0.11
755
+ - type: precision_at_3
756
+ value: 12.986
757
+ - type: precision_at_5
758
+ value: 9.049
759
+ - type: recall_at_1
760
+ value: 23.951
761
+ - type: recall_at_10
762
+ value: 45.24
763
+ - type: recall_at_100
764
+ value: 64.12299999999999
765
+ - type: recall_at_1000
766
+ value: 82.28999999999999
767
+ - type: recall_at_3
768
+ value: 33.806000000000004
769
+ - type: recall_at_5
770
+ value: 38.277
771
+ - type: map_at_1
772
+ value: 16.829
773
+ - type: map_at_10
774
+ value: 23.684
775
+ - type: map_at_100
776
+ value: 24.683
777
+ - type: map_at_1000
778
+ value: 24.81
779
+ - type: map_at_3
780
+ value: 21.554000000000002
781
+ - type: map_at_5
782
+ value: 22.768
783
+ - type: mrr_at_1
784
+ value: 20.096
785
+ - type: mrr_at_10
786
+ value: 27.230999999999998
787
+ - type: mrr_at_100
788
+ value: 28.083999999999996
789
+ - type: mrr_at_1000
790
+ value: 28.166000000000004
791
+ - type: mrr_at_3
792
+ value: 25.212
793
+ - type: mrr_at_5
794
+ value: 26.32
795
+ - type: ndcg_at_1
796
+ value: 20.096
797
+ - type: ndcg_at_10
798
+ value: 27.989000000000004
799
+ - type: ndcg_at_100
800
+ value: 32.847
801
+ - type: ndcg_at_1000
802
+ value: 35.896
803
+ - type: ndcg_at_3
804
+ value: 24.116
805
+ - type: ndcg_at_5
806
+ value: 25.964
807
+ - type: precision_at_1
808
+ value: 20.096
809
+ - type: precision_at_10
810
+ value: 5
811
+ - type: precision_at_100
812
+ value: 0.8750000000000001
813
+ - type: precision_at_1000
814
+ value: 0.131
815
+ - type: precision_at_3
816
+ value: 11.207
817
+ - type: precision_at_5
818
+ value: 8.08
819
+ - type: recall_at_1
820
+ value: 16.829
821
+ - type: recall_at_10
822
+ value: 37.407000000000004
823
+ - type: recall_at_100
824
+ value: 59.101000000000006
825
+ - type: recall_at_1000
826
+ value: 81.024
827
+ - type: recall_at_3
828
+ value: 26.739
829
+ - type: recall_at_5
830
+ value: 31.524
831
+ - type: map_at_1
832
+ value: 24.138
833
+ - type: map_at_10
834
+ value: 32.275999999999996
835
+ - type: map_at_100
836
+ value: 33.416000000000004
837
+ - type: map_at_1000
838
+ value: 33.527
839
+ - type: map_at_3
840
+ value: 29.854000000000003
841
+ - type: map_at_5
842
+ value: 31.096
843
+ - type: mrr_at_1
844
+ value: 28.450999999999997
845
+ - type: mrr_at_10
846
+ value: 36.214
847
+ - type: mrr_at_100
848
+ value: 37.134
849
+ - type: mrr_at_1000
850
+ value: 37.198
851
+ - type: mrr_at_3
852
+ value: 34.001999999999995
853
+ - type: mrr_at_5
854
+ value: 35.187000000000005
855
+ - type: ndcg_at_1
856
+ value: 28.450999999999997
857
+ - type: ndcg_at_10
858
+ value: 37.166
859
+ - type: ndcg_at_100
860
+ value: 42.454
861
+ - type: ndcg_at_1000
862
+ value: 44.976
863
+ - type: ndcg_at_3
864
+ value: 32.796
865
+ - type: ndcg_at_5
866
+ value: 34.631
867
+ - type: precision_at_1
868
+ value: 28.450999999999997
869
+ - type: precision_at_10
870
+ value: 6.241
871
+ - type: precision_at_100
872
+ value: 0.9950000000000001
873
+ - type: precision_at_1000
874
+ value: 0.133
875
+ - type: precision_at_3
876
+ value: 14.801
877
+ - type: precision_at_5
878
+ value: 10.280000000000001
879
+ - type: recall_at_1
880
+ value: 24.138
881
+ - type: recall_at_10
882
+ value: 48.111
883
+ - type: recall_at_100
884
+ value: 71.245
885
+ - type: recall_at_1000
886
+ value: 88.986
887
+ - type: recall_at_3
888
+ value: 36.119
889
+ - type: recall_at_5
890
+ value: 40.846
891
+ - type: map_at_1
892
+ value: 23.244
893
+ - type: map_at_10
894
+ value: 31.227
895
+ - type: map_at_100
896
+ value: 33.007
897
+ - type: map_at_1000
898
+ value: 33.223
899
+ - type: map_at_3
900
+ value: 28.924
901
+ - type: map_at_5
902
+ value: 30.017
903
+ - type: mrr_at_1
904
+ value: 27.668
905
+ - type: mrr_at_10
906
+ value: 35.524
907
+ - type: mrr_at_100
908
+ value: 36.699
909
+ - type: mrr_at_1000
910
+ value: 36.759
911
+ - type: mrr_at_3
912
+ value: 33.366
913
+ - type: mrr_at_5
914
+ value: 34.552
915
+ - type: ndcg_at_1
916
+ value: 27.668
917
+ - type: ndcg_at_10
918
+ value: 36.381
919
+ - type: ndcg_at_100
920
+ value: 43.062
921
+ - type: ndcg_at_1000
922
+ value: 45.656
923
+ - type: ndcg_at_3
924
+ value: 32.501999999999995
925
+ - type: ndcg_at_5
926
+ value: 34.105999999999995
927
+ - type: precision_at_1
928
+ value: 27.668
929
+ - type: precision_at_10
930
+ value: 6.798
931
+ - type: precision_at_100
932
+ value: 1.492
933
+ - type: precision_at_1000
934
+ value: 0.234
935
+ - type: precision_at_3
936
+ value: 15.152
937
+ - type: precision_at_5
938
+ value: 10.791
939
+ - type: recall_at_1
940
+ value: 23.244
941
+ - type: recall_at_10
942
+ value: 45.979
943
+ - type: recall_at_100
944
+ value: 74.822
945
+ - type: recall_at_1000
946
+ value: 91.078
947
+ - type: recall_at_3
948
+ value: 34.925
949
+ - type: recall_at_5
950
+ value: 39.126
951
+ - type: map_at_1
952
+ value: 19.945
953
+ - type: map_at_10
954
+ value: 27.517999999999997
955
+ - type: map_at_100
956
+ value: 28.588
957
+ - type: map_at_1000
958
+ value: 28.682000000000002
959
+ - type: map_at_3
960
+ value: 25.345000000000002
961
+ - type: map_at_5
962
+ value: 26.555
963
+ - type: mrr_at_1
964
+ value: 21.996
965
+ - type: mrr_at_10
966
+ value: 29.845
967
+ - type: mrr_at_100
968
+ value: 30.775999999999996
969
+ - type: mrr_at_1000
970
+ value: 30.845
971
+ - type: mrr_at_3
972
+ value: 27.726
973
+ - type: mrr_at_5
974
+ value: 28.882
975
+ - type: ndcg_at_1
976
+ value: 21.996
977
+ - type: ndcg_at_10
978
+ value: 32.034
979
+ - type: ndcg_at_100
980
+ value: 37.185
981
+ - type: ndcg_at_1000
982
+ value: 39.645
983
+ - type: ndcg_at_3
984
+ value: 27.750999999999998
985
+ - type: ndcg_at_5
986
+ value: 29.805999999999997
987
+ - type: precision_at_1
988
+ value: 21.996
989
+ - type: precision_at_10
990
+ value: 5.065
991
+ - type: precision_at_100
992
+ value: 0.819
993
+ - type: precision_at_1000
994
+ value: 0.11399999999999999
995
+ - type: precision_at_3
996
+ value: 12.076
997
+ - type: precision_at_5
998
+ value: 8.392
999
+ - type: recall_at_1
1000
+ value: 19.945
1001
+ - type: recall_at_10
1002
+ value: 43.62
1003
+ - type: recall_at_100
1004
+ value: 67.194
1005
+ - type: recall_at_1000
1006
+ value: 85.7
1007
+ - type: recall_at_3
1008
+ value: 32.15
1009
+ - type: recall_at_5
1010
+ value: 37.208999999999996
1011
+ - task:
1012
+ type: Retrieval
1013
+ dataset:
1014
+ name: MTEB ClimateFEVER
1015
+ type: climate-fever
1016
+ config: default
1017
+ split: test
1018
+ revision: None
1019
+ metrics:
1020
+ - type: map_at_1
1021
+ value: 18.279
1022
+ - type: map_at_10
1023
+ value: 31.052999999999997
1024
+ - type: map_at_100
1025
+ value: 33.125
1026
+ - type: map_at_1000
1027
+ value: 33.306000000000004
1028
+ - type: map_at_3
1029
+ value: 26.208
1030
+ - type: map_at_5
1031
+ value: 28.857
1032
+ - type: mrr_at_1
1033
+ value: 42.671
1034
+ - type: mrr_at_10
1035
+ value: 54.557
1036
+ - type: mrr_at_100
1037
+ value: 55.142
1038
+ - type: mrr_at_1000
1039
+ value: 55.169000000000004
1040
+ - type: mrr_at_3
1041
+ value: 51.488
1042
+ - type: mrr_at_5
1043
+ value: 53.439
1044
+ - type: ndcg_at_1
1045
+ value: 42.671
1046
+ - type: ndcg_at_10
1047
+ value: 41.276
1048
+ - type: ndcg_at_100
1049
+ value: 48.376000000000005
1050
+ - type: ndcg_at_1000
1051
+ value: 51.318
1052
+ - type: ndcg_at_3
1053
+ value: 35.068
1054
+ - type: ndcg_at_5
1055
+ value: 37.242
1056
+ - type: precision_at_1
1057
+ value: 42.671
1058
+ - type: precision_at_10
1059
+ value: 12.638
1060
+ - type: precision_at_100
1061
+ value: 2.045
1062
+ - type: precision_at_1000
1063
+ value: 0.26
1064
+ - type: precision_at_3
1065
+ value: 26.08
1066
+ - type: precision_at_5
1067
+ value: 19.805
1068
+ - type: recall_at_1
1069
+ value: 18.279
1070
+ - type: recall_at_10
1071
+ value: 46.946
1072
+ - type: recall_at_100
1073
+ value: 70.97200000000001
1074
+ - type: recall_at_1000
1075
+ value: 87.107
1076
+ - type: recall_at_3
1077
+ value: 31.147999999999996
1078
+ - type: recall_at_5
1079
+ value: 38.099
1080
+ - task:
1081
+ type: Retrieval
1082
+ dataset:
1083
+ name: MTEB DBPedia
1084
+ type: dbpedia-entity
1085
+ config: default
1086
+ split: test
1087
+ revision: None
1088
+ metrics:
1089
+ - type: map_at_1
1090
+ value: 8.573
1091
+ - type: map_at_10
1092
+ value: 19.747
1093
+ - type: map_at_100
1094
+ value: 28.205000000000002
1095
+ - type: map_at_1000
1096
+ value: 29.831000000000003
1097
+ - type: map_at_3
1098
+ value: 14.109
1099
+ - type: map_at_5
1100
+ value: 16.448999999999998
1101
+ - type: mrr_at_1
1102
+ value: 71
1103
+ - type: mrr_at_10
1104
+ value: 77.68599999999999
1105
+ - type: mrr_at_100
1106
+ value: 77.995
1107
+ - type: mrr_at_1000
1108
+ value: 78.00200000000001
1109
+ - type: mrr_at_3
1110
+ value: 76.292
1111
+ - type: mrr_at_5
1112
+ value: 77.029
1113
+ - type: ndcg_at_1
1114
+ value: 59.12500000000001
1115
+ - type: ndcg_at_10
1116
+ value: 43.9
1117
+ - type: ndcg_at_100
1118
+ value: 47.863
1119
+ - type: ndcg_at_1000
1120
+ value: 54.848
1121
+ - type: ndcg_at_3
1122
+ value: 49.803999999999995
1123
+ - type: ndcg_at_5
1124
+ value: 46.317
1125
+ - type: precision_at_1
1126
+ value: 71
1127
+ - type: precision_at_10
1128
+ value: 34.4
1129
+ - type: precision_at_100
1130
+ value: 11.063
1131
+ - type: precision_at_1000
1132
+ value: 1.989
1133
+ - type: precision_at_3
1134
+ value: 52.333
1135
+ - type: precision_at_5
1136
+ value: 43.7
1137
+ - type: recall_at_1
1138
+ value: 8.573
1139
+ - type: recall_at_10
1140
+ value: 25.615
1141
+ - type: recall_at_100
1142
+ value: 53.385000000000005
1143
+ - type: recall_at_1000
1144
+ value: 75.46000000000001
1145
+ - type: recall_at_3
1146
+ value: 15.429
1147
+ - type: recall_at_5
1148
+ value: 19.357
1149
+ - task:
1150
+ type: Classification
1151
+ dataset:
1152
+ name: MTEB EmotionClassification
1153
+ type: mteb/emotion
1154
+ config: default
1155
+ split: test
1156
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1157
+ metrics:
1158
+ - type: accuracy
1159
+ value: 47.989999999999995
1160
+ - type: f1
1161
+ value: 42.776314451497555
1162
+ - task:
1163
+ type: Retrieval
1164
+ dataset:
1165
+ name: MTEB FEVER
1166
+ type: fever
1167
+ config: default
1168
+ split: test
1169
+ revision: None
1170
+ metrics:
1171
+ - type: map_at_1
1172
+ value: 74.13499999999999
1173
+ - type: map_at_10
1174
+ value: 82.825
1175
+ - type: map_at_100
1176
+ value: 83.096
1177
+ - type: map_at_1000
1178
+ value: 83.111
1179
+ - type: map_at_3
1180
+ value: 81.748
1181
+ - type: map_at_5
1182
+ value: 82.446
1183
+ - type: mrr_at_1
1184
+ value: 79.553
1185
+ - type: mrr_at_10
1186
+ value: 86.654
1187
+ - type: mrr_at_100
1188
+ value: 86.774
1189
+ - type: mrr_at_1000
1190
+ value: 86.778
1191
+ - type: mrr_at_3
1192
+ value: 85.981
1193
+ - type: mrr_at_5
1194
+ value: 86.462
1195
+ - type: ndcg_at_1
1196
+ value: 79.553
1197
+ - type: ndcg_at_10
1198
+ value: 86.345
1199
+ - type: ndcg_at_100
1200
+ value: 87.32
1201
+ - type: ndcg_at_1000
1202
+ value: 87.58200000000001
1203
+ - type: ndcg_at_3
1204
+ value: 84.719
1205
+ - type: ndcg_at_5
1206
+ value: 85.677
1207
+ - type: precision_at_1
1208
+ value: 79.553
1209
+ - type: precision_at_10
1210
+ value: 10.402000000000001
1211
+ - type: precision_at_100
1212
+ value: 1.1119999999999999
1213
+ - type: precision_at_1000
1214
+ value: 0.11499999999999999
1215
+ - type: precision_at_3
1216
+ value: 32.413
1217
+ - type: precision_at_5
1218
+ value: 20.138
1219
+ - type: recall_at_1
1220
+ value: 74.13499999999999
1221
+ - type: recall_at_10
1222
+ value: 93.215
1223
+ - type: recall_at_100
1224
+ value: 97.083
1225
+ - type: recall_at_1000
1226
+ value: 98.732
1227
+ - type: recall_at_3
1228
+ value: 88.79
1229
+ - type: recall_at_5
1230
+ value: 91.259
1231
+ - task:
1232
+ type: Retrieval
1233
+ dataset:
1234
+ name: MTEB FiQA2018
1235
+ type: fiqa
1236
+ config: default
1237
+ split: test
1238
+ revision: None
1239
+ metrics:
1240
+ - type: map_at_1
1241
+ value: 18.298000000000002
1242
+ - type: map_at_10
1243
+ value: 29.901
1244
+ - type: map_at_100
1245
+ value: 31.528
1246
+ - type: map_at_1000
1247
+ value: 31.713
1248
+ - type: map_at_3
1249
+ value: 25.740000000000002
1250
+ - type: map_at_5
1251
+ value: 28.227999999999998
1252
+ - type: mrr_at_1
1253
+ value: 36.728
1254
+ - type: mrr_at_10
1255
+ value: 45.401
1256
+ - type: mrr_at_100
1257
+ value: 46.27
1258
+ - type: mrr_at_1000
1259
+ value: 46.315
1260
+ - type: mrr_at_3
1261
+ value: 42.978
1262
+ - type: mrr_at_5
1263
+ value: 44.29
1264
+ - type: ndcg_at_1
1265
+ value: 36.728
1266
+ - type: ndcg_at_10
1267
+ value: 37.456
1268
+ - type: ndcg_at_100
1269
+ value: 43.832
1270
+ - type: ndcg_at_1000
1271
+ value: 47
1272
+ - type: ndcg_at_3
1273
+ value: 33.694
1274
+ - type: ndcg_at_5
1275
+ value: 35.085
1276
+ - type: precision_at_1
1277
+ value: 36.728
1278
+ - type: precision_at_10
1279
+ value: 10.386
1280
+ - type: precision_at_100
1281
+ value: 1.701
1282
+ - type: precision_at_1000
1283
+ value: 0.22599999999999998
1284
+ - type: precision_at_3
1285
+ value: 22.479
1286
+ - type: precision_at_5
1287
+ value: 16.605
1288
+ - type: recall_at_1
1289
+ value: 18.298000000000002
1290
+ - type: recall_at_10
1291
+ value: 44.369
1292
+ - type: recall_at_100
1293
+ value: 68.098
1294
+ - type: recall_at_1000
1295
+ value: 87.21900000000001
1296
+ - type: recall_at_3
1297
+ value: 30.215999999999998
1298
+ - type: recall_at_5
1299
+ value: 36.861
1300
+ - task:
1301
+ type: Retrieval
1302
+ dataset:
1303
+ name: MTEB HotpotQA
1304
+ type: hotpotqa
1305
+ config: default
1306
+ split: test
1307
+ revision: None
1308
+ metrics:
1309
+ - type: map_at_1
1310
+ value: 39.568
1311
+ - type: map_at_10
1312
+ value: 65.061
1313
+ - type: map_at_100
1314
+ value: 65.896
1315
+ - type: map_at_1000
1316
+ value: 65.95100000000001
1317
+ - type: map_at_3
1318
+ value: 61.831
1319
+ - type: map_at_5
1320
+ value: 63.849000000000004
1321
+ - type: mrr_at_1
1322
+ value: 79.136
1323
+ - type: mrr_at_10
1324
+ value: 84.58200000000001
1325
+ - type: mrr_at_100
1326
+ value: 84.765
1327
+ - type: mrr_at_1000
1328
+ value: 84.772
1329
+ - type: mrr_at_3
1330
+ value: 83.684
1331
+ - type: mrr_at_5
1332
+ value: 84.223
1333
+ - type: ndcg_at_1
1334
+ value: 79.136
1335
+ - type: ndcg_at_10
1336
+ value: 72.622
1337
+ - type: ndcg_at_100
1338
+ value: 75.539
1339
+ - type: ndcg_at_1000
1340
+ value: 76.613
1341
+ - type: ndcg_at_3
1342
+ value: 68.065
1343
+ - type: ndcg_at_5
1344
+ value: 70.58
1345
+ - type: precision_at_1
1346
+ value: 79.136
1347
+ - type: precision_at_10
1348
+ value: 15.215
1349
+ - type: precision_at_100
1350
+ value: 1.7500000000000002
1351
+ - type: precision_at_1000
1352
+ value: 0.189
1353
+ - type: precision_at_3
1354
+ value: 44.011
1355
+ - type: precision_at_5
1356
+ value: 28.388999999999996
1357
+ - type: recall_at_1
1358
+ value: 39.568
1359
+ - type: recall_at_10
1360
+ value: 76.077
1361
+ - type: recall_at_100
1362
+ value: 87.481
1363
+ - type: recall_at_1000
1364
+ value: 94.56400000000001
1365
+ - type: recall_at_3
1366
+ value: 66.01599999999999
1367
+ - type: recall_at_5
1368
+ value: 70.97200000000001
1369
+ - task:
1370
+ type: Classification
1371
+ dataset:
1372
+ name: MTEB ImdbClassification
1373
+ type: mteb/imdb
1374
+ config: default
1375
+ split: test
1376
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1377
+ metrics:
1378
+ - type: accuracy
1379
+ value: 85.312
1380
+ - type: ap
1381
+ value: 80.36296867333715
1382
+ - type: f1
1383
+ value: 85.26613311552218
1384
+ - task:
1385
+ type: Retrieval
1386
+ dataset:
1387
+ name: MTEB MSMARCO
1388
+ type: msmarco
1389
+ config: default
1390
+ split: dev
1391
+ revision: None
1392
+ metrics:
1393
+ - type: map_at_1
1394
+ value: 23.363999999999997
1395
+ - type: map_at_10
1396
+ value: 35.711999999999996
1397
+ - type: map_at_100
1398
+ value: 36.876999999999995
1399
+ - type: map_at_1000
1400
+ value: 36.923
1401
+ - type: map_at_3
1402
+ value: 32.034
1403
+ - type: map_at_5
1404
+ value: 34.159
1405
+ - type: mrr_at_1
1406
+ value: 24.04
1407
+ - type: mrr_at_10
1408
+ value: 36.345
1409
+ - type: mrr_at_100
1410
+ value: 37.441
1411
+ - type: mrr_at_1000
1412
+ value: 37.480000000000004
1413
+ - type: mrr_at_3
1414
+ value: 32.713
1415
+ - type: mrr_at_5
1416
+ value: 34.824
1417
+ - type: ndcg_at_1
1418
+ value: 24.026
1419
+ - type: ndcg_at_10
1420
+ value: 42.531
1421
+ - type: ndcg_at_100
1422
+ value: 48.081
1423
+ - type: ndcg_at_1000
1424
+ value: 49.213
1425
+ - type: ndcg_at_3
1426
+ value: 35.044
1427
+ - type: ndcg_at_5
1428
+ value: 38.834
1429
+ - type: precision_at_1
1430
+ value: 24.026
1431
+ - type: precision_at_10
1432
+ value: 6.622999999999999
1433
+ - type: precision_at_100
1434
+ value: 0.941
1435
+ - type: precision_at_1000
1436
+ value: 0.104
1437
+ - type: precision_at_3
1438
+ value: 14.909
1439
+ - type: precision_at_5
1440
+ value: 10.871
1441
+ - type: recall_at_1
1442
+ value: 23.363999999999997
1443
+ - type: recall_at_10
1444
+ value: 63.426
1445
+ - type: recall_at_100
1446
+ value: 88.96300000000001
1447
+ - type: recall_at_1000
1448
+ value: 97.637
1449
+ - type: recall_at_3
1450
+ value: 43.095
1451
+ - type: recall_at_5
1452
+ value: 52.178000000000004
1453
+ - task:
1454
+ type: Classification
1455
+ dataset:
1456
+ name: MTEB MTOPDomainClassification (en)
1457
+ type: mteb/mtop_domain
1458
+ config: en
1459
+ split: test
1460
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1461
+ metrics:
1462
+ - type: accuracy
1463
+ value: 93.0095759233926
1464
+ - type: f1
1465
+ value: 92.78387794667408
1466
+ - task:
1467
+ type: Classification
1468
+ dataset:
1469
+ name: MTEB MTOPIntentClassification (en)
1470
+ type: mteb/mtop_intent
1471
+ config: en
1472
+ split: test
1473
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1474
+ metrics:
1475
+ - type: accuracy
1476
+ value: 75.0296397628819
1477
+ - type: f1
1478
+ value: 58.45699589820874
1479
+ - task:
1480
+ type: Classification
1481
+ dataset:
1482
+ name: MTEB MassiveIntentClassification (en)
1483
+ type: mteb/amazon_massive_intent
1484
+ config: en
1485
+ split: test
1486
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1487
+ metrics:
1488
+ - type: accuracy
1489
+ value: 73.45662407531944
1490
+ - type: f1
1491
+ value: 71.42364781421813
1492
+ - task:
1493
+ type: Classification
1494
+ dataset:
1495
+ name: MTEB MassiveScenarioClassification (en)
1496
+ type: mteb/amazon_massive_scenario
1497
+ config: en
1498
+ split: test
1499
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1500
+ metrics:
1501
+ - type: accuracy
1502
+ value: 77.07800941492937
1503
+ - type: f1
1504
+ value: 77.22799045640845
1505
+ - task:
1506
+ type: Clustering
1507
+ dataset:
1508
+ name: MTEB MedrxivClusteringP2P
1509
+ type: mteb/medrxiv-clustering-p2p
1510
+ config: default
1511
+ split: test
1512
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1513
+ metrics:
1514
+ - type: v_measure
1515
+ value: 34.531234379250606
1516
+ - task:
1517
+ type: Clustering
1518
+ dataset:
1519
+ name: MTEB MedrxivClusteringS2S
1520
+ type: mteb/medrxiv-clustering-s2s
1521
+ config: default
1522
+ split: test
1523
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1524
+ metrics:
1525
+ - type: v_measure
1526
+ value: 30.941490381193802
1527
+ - task:
1528
+ type: Reranking
1529
+ dataset:
1530
+ name: MTEB MindSmallReranking
1531
+ type: mteb/mind_small
1532
+ config: default
1533
+ split: test
1534
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1535
+ metrics:
1536
+ - type: map
1537
+ value: 30.3115090856725
1538
+ - type: mrr
1539
+ value: 31.290667638675757
1540
+ - task:
1541
+ type: Retrieval
1542
+ dataset:
1543
+ name: MTEB NFCorpus
1544
+ type: nfcorpus
1545
+ config: default
1546
+ split: test
1547
+ revision: None
1548
+ metrics:
1549
+ - type: map_at_1
1550
+ value: 5.465
1551
+ - type: map_at_10
1552
+ value: 13.03
1553
+ - type: map_at_100
1554
+ value: 16.057
1555
+ - type: map_at_1000
1556
+ value: 17.49
1557
+ - type: map_at_3
1558
+ value: 9.553
1559
+ - type: map_at_5
1560
+ value: 11.204
1561
+ - type: mrr_at_1
1562
+ value: 43.653
1563
+ - type: mrr_at_10
1564
+ value: 53.269
1565
+ - type: mrr_at_100
1566
+ value: 53.72
1567
+ - type: mrr_at_1000
1568
+ value: 53.761
1569
+ - type: mrr_at_3
1570
+ value: 50.929
1571
+ - type: mrr_at_5
1572
+ value: 52.461
1573
+ - type: ndcg_at_1
1574
+ value: 42.26
1575
+ - type: ndcg_at_10
1576
+ value: 34.673
1577
+ - type: ndcg_at_100
1578
+ value: 30.759999999999998
1579
+ - type: ndcg_at_1000
1580
+ value: 39.728
1581
+ - type: ndcg_at_3
1582
+ value: 40.349000000000004
1583
+ - type: ndcg_at_5
1584
+ value: 37.915
1585
+ - type: precision_at_1
1586
+ value: 43.653
1587
+ - type: precision_at_10
1588
+ value: 25.789
1589
+ - type: precision_at_100
1590
+ value: 7.754999999999999
1591
+ - type: precision_at_1000
1592
+ value: 2.07
1593
+ - type: precision_at_3
1594
+ value: 38.596000000000004
1595
+ - type: precision_at_5
1596
+ value: 33.251
1597
+ - type: recall_at_1
1598
+ value: 5.465
1599
+ - type: recall_at_10
1600
+ value: 17.148
1601
+ - type: recall_at_100
1602
+ value: 29.768
1603
+ - type: recall_at_1000
1604
+ value: 62.239
1605
+ - type: recall_at_3
1606
+ value: 10.577
1607
+ - type: recall_at_5
1608
+ value: 13.315
1609
+ - task:
1610
+ type: Retrieval
1611
+ dataset:
1612
+ name: MTEB NQ
1613
+ type: nq
1614
+ config: default
1615
+ split: test
1616
+ revision: None
1617
+ metrics:
1618
+ - type: map_at_1
1619
+ value: 37.008
1620
+ - type: map_at_10
1621
+ value: 52.467
1622
+ - type: map_at_100
1623
+ value: 53.342999999999996
1624
+ - type: map_at_1000
1625
+ value: 53.366
1626
+ - type: map_at_3
1627
+ value: 48.412
1628
+ - type: map_at_5
1629
+ value: 50.875
1630
+ - type: mrr_at_1
1631
+ value: 41.541
1632
+ - type: mrr_at_10
1633
+ value: 54.967
1634
+ - type: mrr_at_100
1635
+ value: 55.611
1636
+ - type: mrr_at_1000
1637
+ value: 55.627
1638
+ - type: mrr_at_3
1639
+ value: 51.824999999999996
1640
+ - type: mrr_at_5
1641
+ value: 53.763000000000005
1642
+ - type: ndcg_at_1
1643
+ value: 41.541
1644
+ - type: ndcg_at_10
1645
+ value: 59.724999999999994
1646
+ - type: ndcg_at_100
1647
+ value: 63.38700000000001
1648
+ - type: ndcg_at_1000
1649
+ value: 63.883
1650
+ - type: ndcg_at_3
1651
+ value: 52.331
1652
+ - type: ndcg_at_5
1653
+ value: 56.327000000000005
1654
+ - type: precision_at_1
1655
+ value: 41.541
1656
+ - type: precision_at_10
1657
+ value: 9.447
1658
+ - type: precision_at_100
1659
+ value: 1.1520000000000001
1660
+ - type: precision_at_1000
1661
+ value: 0.12
1662
+ - type: precision_at_3
1663
+ value: 23.262
1664
+ - type: precision_at_5
1665
+ value: 16.314999999999998
1666
+ - type: recall_at_1
1667
+ value: 37.008
1668
+ - type: recall_at_10
1669
+ value: 79.145
1670
+ - type: recall_at_100
1671
+ value: 94.986
1672
+ - type: recall_at_1000
1673
+ value: 98.607
1674
+ - type: recall_at_3
1675
+ value: 60.277
1676
+ - type: recall_at_5
1677
+ value: 69.407
1678
+ - task:
1679
+ type: Retrieval
1680
+ dataset:
1681
+ name: MTEB QuoraRetrieval
1682
+ type: quora
1683
+ config: default
1684
+ split: test
1685
+ revision: None
1686
+ metrics:
1687
+ - type: map_at_1
1688
+ value: 70.402
1689
+ - type: map_at_10
1690
+ value: 84.181
1691
+ - type: map_at_100
1692
+ value: 84.796
1693
+ - type: map_at_1000
1694
+ value: 84.81400000000001
1695
+ - type: map_at_3
1696
+ value: 81.209
1697
+ - type: map_at_5
1698
+ value: 83.085
1699
+ - type: mrr_at_1
1700
+ value: 81.02000000000001
1701
+ - type: mrr_at_10
1702
+ value: 87.263
1703
+ - type: mrr_at_100
1704
+ value: 87.36
1705
+ - type: mrr_at_1000
1706
+ value: 87.36
1707
+ - type: mrr_at_3
1708
+ value: 86.235
1709
+ - type: mrr_at_5
1710
+ value: 86.945
1711
+ - type: ndcg_at_1
1712
+ value: 81.01
1713
+ - type: ndcg_at_10
1714
+ value: 87.99900000000001
1715
+ - type: ndcg_at_100
1716
+ value: 89.217
1717
+ - type: ndcg_at_1000
1718
+ value: 89.33
1719
+ - type: ndcg_at_3
1720
+ value: 85.053
1721
+ - type: ndcg_at_5
1722
+ value: 86.703
1723
+ - type: precision_at_1
1724
+ value: 81.01
1725
+ - type: precision_at_10
1726
+ value: 13.336
1727
+ - type: precision_at_100
1728
+ value: 1.52
1729
+ - type: precision_at_1000
1730
+ value: 0.156
1731
+ - type: precision_at_3
1732
+ value: 37.14
1733
+ - type: precision_at_5
1734
+ value: 24.44
1735
+ - type: recall_at_1
1736
+ value: 70.402
1737
+ - type: recall_at_10
1738
+ value: 95.214
1739
+ - type: recall_at_100
1740
+ value: 99.438
1741
+ - type: recall_at_1000
1742
+ value: 99.928
1743
+ - type: recall_at_3
1744
+ value: 86.75699999999999
1745
+ - type: recall_at_5
1746
+ value: 91.44099999999999
1747
+ - task:
1748
+ type: Clustering
1749
+ dataset:
1750
+ name: MTEB RedditClustering
1751
+ type: mteb/reddit-clustering
1752
+ config: default
1753
+ split: test
1754
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1755
+ metrics:
1756
+ - type: v_measure
1757
+ value: 56.51721502758904
1758
+ - task:
1759
+ type: Clustering
1760
+ dataset:
1761
+ name: MTEB RedditClusteringP2P
1762
+ type: mteb/reddit-clustering-p2p
1763
+ config: default
1764
+ split: test
1765
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1766
+ metrics:
1767
+ - type: v_measure
1768
+ value: 61.054808572333016
1769
+ - task:
1770
+ type: Retrieval
1771
+ dataset:
1772
+ name: MTEB SCIDOCS
1773
+ type: scidocs
1774
+ config: default
1775
+ split: test
1776
+ revision: None
1777
+ metrics:
1778
+ - type: map_at_1
1779
+ value: 4.578
1780
+ - type: map_at_10
1781
+ value: 11.036999999999999
1782
+ - type: map_at_100
1783
+ value: 12.879999999999999
1784
+ - type: map_at_1000
1785
+ value: 13.150999999999998
1786
+ - type: map_at_3
1787
+ value: 8.133
1788
+ - type: map_at_5
1789
+ value: 9.559
1790
+ - type: mrr_at_1
1791
+ value: 22.6
1792
+ - type: mrr_at_10
1793
+ value: 32.68
1794
+ - type: mrr_at_100
1795
+ value: 33.789
1796
+ - type: mrr_at_1000
1797
+ value: 33.854
1798
+ - type: mrr_at_3
1799
+ value: 29.7
1800
+ - type: mrr_at_5
1801
+ value: 31.480000000000004
1802
+ - type: ndcg_at_1
1803
+ value: 22.6
1804
+ - type: ndcg_at_10
1805
+ value: 18.616
1806
+ - type: ndcg_at_100
1807
+ value: 25.883
1808
+ - type: ndcg_at_1000
1809
+ value: 30.944
1810
+ - type: ndcg_at_3
1811
+ value: 18.136
1812
+ - type: ndcg_at_5
1813
+ value: 15.625
1814
+ - type: precision_at_1
1815
+ value: 22.6
1816
+ - type: precision_at_10
1817
+ value: 9.48
1818
+ - type: precision_at_100
1819
+ value: 1.991
1820
+ - type: precision_at_1000
1821
+ value: 0.321
1822
+ - type: precision_at_3
1823
+ value: 16.8
1824
+ - type: precision_at_5
1825
+ value: 13.54
1826
+ - type: recall_at_1
1827
+ value: 4.578
1828
+ - type: recall_at_10
1829
+ value: 19.213
1830
+ - type: recall_at_100
1831
+ value: 40.397
1832
+ - type: recall_at_1000
1833
+ value: 65.2
1834
+ - type: recall_at_3
1835
+ value: 10.208
1836
+ - type: recall_at_5
1837
+ value: 13.718
1838
+ - task:
1839
+ type: STS
1840
+ dataset:
1841
+ name: MTEB SICK-R
1842
+ type: mteb/sickr-sts
1843
+ config: default
1844
+ split: test
1845
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1846
+ metrics:
1847
+ - type: cos_sim_pearson
1848
+ value: 83.44288351714071
1849
+ - type: cos_sim_spearman
1850
+ value: 79.37995604564952
1851
+ - type: euclidean_pearson
1852
+ value: 81.1078874670718
1853
+ - type: euclidean_spearman
1854
+ value: 79.37995905980499
1855
+ - type: manhattan_pearson
1856
+ value: 81.03697527288986
1857
+ - type: manhattan_spearman
1858
+ value: 79.33490235296236
1859
+ - task:
1860
+ type: STS
1861
+ dataset:
1862
+ name: MTEB STS12
1863
+ type: mteb/sts12-sts
1864
+ config: default
1865
+ split: test
1866
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1867
+ metrics:
1868
+ - type: cos_sim_pearson
1869
+ value: 84.95557650436523
1870
+ - type: cos_sim_spearman
1871
+ value: 78.5190672399868
1872
+ - type: euclidean_pearson
1873
+ value: 81.58064025904707
1874
+ - type: euclidean_spearman
1875
+ value: 78.5190672399868
1876
+ - type: manhattan_pearson
1877
+ value: 81.52857930619889
1878
+ - type: manhattan_spearman
1879
+ value: 78.50421361308034
1880
+ - task:
1881
+ type: STS
1882
+ dataset:
1883
+ name: MTEB STS13
1884
+ type: mteb/sts13-sts
1885
+ config: default
1886
+ split: test
1887
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1888
+ metrics:
1889
+ - type: cos_sim_pearson
1890
+ value: 84.79128416228737
1891
+ - type: cos_sim_spearman
1892
+ value: 86.05402451477147
1893
+ - type: euclidean_pearson
1894
+ value: 85.46280267054289
1895
+ - type: euclidean_spearman
1896
+ value: 86.05402451477147
1897
+ - type: manhattan_pearson
1898
+ value: 85.46278563858236
1899
+ - type: manhattan_spearman
1900
+ value: 86.08079590861004
1901
+ - task:
1902
+ type: STS
1903
+ dataset:
1904
+ name: MTEB STS14
1905
+ type: mteb/sts14-sts
1906
+ config: default
1907
+ split: test
1908
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1909
+ metrics:
1910
+ - type: cos_sim_pearson
1911
+ value: 83.20623089568763
1912
+ - type: cos_sim_spearman
1913
+ value: 81.53786907061009
1914
+ - type: euclidean_pearson
1915
+ value: 82.82272250091494
1916
+ - type: euclidean_spearman
1917
+ value: 81.53786907061009
1918
+ - type: manhattan_pearson
1919
+ value: 82.78850494027013
1920
+ - type: manhattan_spearman
1921
+ value: 81.5135618083407
1922
+ - task:
1923
+ type: STS
1924
+ dataset:
1925
+ name: MTEB STS15
1926
+ type: mteb/sts15-sts
1927
+ config: default
1928
+ split: test
1929
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1930
+ metrics:
1931
+ - type: cos_sim_pearson
1932
+ value: 85.46366618397936
1933
+ - type: cos_sim_spearman
1934
+ value: 86.96566013336908
1935
+ - type: euclidean_pearson
1936
+ value: 86.62651697548931
1937
+ - type: euclidean_spearman
1938
+ value: 86.96565526364454
1939
+ - type: manhattan_pearson
1940
+ value: 86.58812160258009
1941
+ - type: manhattan_spearman
1942
+ value: 86.9336484321288
1943
+ - task:
1944
+ type: STS
1945
+ dataset:
1946
+ name: MTEB STS16
1947
+ type: mteb/sts16-sts
1948
+ config: default
1949
+ split: test
1950
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1951
+ metrics:
1952
+ - type: cos_sim_pearson
1953
+ value: 82.51858358641559
1954
+ - type: cos_sim_spearman
1955
+ value: 84.7652527954999
1956
+ - type: euclidean_pearson
1957
+ value: 84.23914783766861
1958
+ - type: euclidean_spearman
1959
+ value: 84.7652527954999
1960
+ - type: manhattan_pearson
1961
+ value: 84.22749648503171
1962
+ - type: manhattan_spearman
1963
+ value: 84.74527996746386
1964
+ - task:
1965
+ type: STS
1966
+ dataset:
1967
+ name: MTEB STS17 (en-en)
1968
+ type: mteb/sts17-crosslingual-sts
1969
+ config: en-en
1970
+ split: test
1971
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1972
+ metrics:
1973
+ - type: cos_sim_pearson
1974
+ value: 87.28026563313065
1975
+ - type: cos_sim_spearman
1976
+ value: 87.46928143824915
1977
+ - type: euclidean_pearson
1978
+ value: 88.30558762000372
1979
+ - type: euclidean_spearman
1980
+ value: 87.46928143824915
1981
+ - type: manhattan_pearson
1982
+ value: 88.10513330809331
1983
+ - type: manhattan_spearman
1984
+ value: 87.21069787834173
1985
+ - task:
1986
+ type: STS
1987
+ dataset:
1988
+ name: MTEB STS22 (en)
1989
+ type: mteb/sts22-crosslingual-sts
1990
+ config: en
1991
+ split: test
1992
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1993
+ metrics:
1994
+ - type: cos_sim_pearson
1995
+ value: 62.376497134587375
1996
+ - type: cos_sim_spearman
1997
+ value: 65.0159550112516
1998
+ - type: euclidean_pearson
1999
+ value: 65.64572120879598
2000
+ - type: euclidean_spearman
2001
+ value: 65.0159550112516
2002
+ - type: manhattan_pearson
2003
+ value: 65.88143604989976
2004
+ - type: manhattan_spearman
2005
+ value: 65.17547297222434
2006
+ - task:
2007
+ type: STS
2008
+ dataset:
2009
+ name: MTEB STSBenchmark
2010
+ type: mteb/stsbenchmark-sts
2011
+ config: default
2012
+ split: test
2013
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2014
+ metrics:
2015
+ - type: cos_sim_pearson
2016
+ value: 84.22876368947644
2017
+ - type: cos_sim_spearman
2018
+ value: 85.46935577445318
2019
+ - type: euclidean_pearson
2020
+ value: 85.32830231392005
2021
+ - type: euclidean_spearman
2022
+ value: 85.46935577445318
2023
+ - type: manhattan_pearson
2024
+ value: 85.30353211758495
2025
+ - type: manhattan_spearman
2026
+ value: 85.42821085956945
2027
+ - task:
2028
+ type: Reranking
2029
+ dataset:
2030
+ name: MTEB SciDocsRR
2031
+ type: mteb/scidocs-reranking
2032
+ config: default
2033
+ split: test
2034
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2035
+ metrics:
2036
+ - type: map
2037
+ value: 80.60986667767133
2038
+ - type: mrr
2039
+ value: 94.29432314236236
2040
+ - task:
2041
+ type: Retrieval
2042
+ dataset:
2043
+ name: MTEB SciFact
2044
+ type: scifact
2045
+ config: default
2046
+ split: test
2047
+ revision: None
2048
+ metrics:
2049
+ - type: map_at_1
2050
+ value: 54.528
2051
+ - type: map_at_10
2052
+ value: 65.187
2053
+ - type: map_at_100
2054
+ value: 65.62599999999999
2055
+ - type: map_at_1000
2056
+ value: 65.657
2057
+ - type: map_at_3
2058
+ value: 62.352
2059
+ - type: map_at_5
2060
+ value: 64.025
2061
+ - type: mrr_at_1
2062
+ value: 57.333
2063
+ - type: mrr_at_10
2064
+ value: 66.577
2065
+ - type: mrr_at_100
2066
+ value: 66.88
2067
+ - type: mrr_at_1000
2068
+ value: 66.908
2069
+ - type: mrr_at_3
2070
+ value: 64.556
2071
+ - type: mrr_at_5
2072
+ value: 65.739
2073
+ - type: ndcg_at_1
2074
+ value: 57.333
2075
+ - type: ndcg_at_10
2076
+ value: 70.275
2077
+ - type: ndcg_at_100
2078
+ value: 72.136
2079
+ - type: ndcg_at_1000
2080
+ value: 72.963
2081
+ - type: ndcg_at_3
2082
+ value: 65.414
2083
+ - type: ndcg_at_5
2084
+ value: 67.831
2085
+ - type: precision_at_1
2086
+ value: 57.333
2087
+ - type: precision_at_10
2088
+ value: 9.5
2089
+ - type: precision_at_100
2090
+ value: 1.057
2091
+ - type: precision_at_1000
2092
+ value: 0.11199999999999999
2093
+ - type: precision_at_3
2094
+ value: 25.778000000000002
2095
+ - type: precision_at_5
2096
+ value: 17.2
2097
+ - type: recall_at_1
2098
+ value: 54.528
2099
+ - type: recall_at_10
2100
+ value: 84.356
2101
+ - type: recall_at_100
2102
+ value: 92.833
2103
+ - type: recall_at_1000
2104
+ value: 99.333
2105
+ - type: recall_at_3
2106
+ value: 71.283
2107
+ - type: recall_at_5
2108
+ value: 77.14999999999999
2109
+ - task:
2110
+ type: PairClassification
2111
+ dataset:
2112
+ name: MTEB SprintDuplicateQuestions
2113
+ type: mteb/sprintduplicatequestions-pairclassification
2114
+ config: default
2115
+ split: test
2116
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2117
+ metrics:
2118
+ - type: cos_sim_accuracy
2119
+ value: 99.74158415841585
2120
+ - type: cos_sim_ap
2121
+ value: 92.90048959850317
2122
+ - type: cos_sim_f1
2123
+ value: 86.35650810245687
2124
+ - type: cos_sim_precision
2125
+ value: 90.4709748083242
2126
+ - type: cos_sim_recall
2127
+ value: 82.6
2128
+ - type: dot_accuracy
2129
+ value: 99.74158415841585
2130
+ - type: dot_ap
2131
+ value: 92.90048959850317
2132
+ - type: dot_f1
2133
+ value: 86.35650810245687
2134
+ - type: dot_precision
2135
+ value: 90.4709748083242
2136
+ - type: dot_recall
2137
+ value: 82.6
2138
+ - type: euclidean_accuracy
2139
+ value: 99.74158415841585
2140
+ - type: euclidean_ap
2141
+ value: 92.90048959850317
2142
+ - type: euclidean_f1
2143
+ value: 86.35650810245687
2144
+ - type: euclidean_precision
2145
+ value: 90.4709748083242
2146
+ - type: euclidean_recall
2147
+ value: 82.6
2148
+ - type: manhattan_accuracy
2149
+ value: 99.74158415841585
2150
+ - type: manhattan_ap
2151
+ value: 92.87344692947894
2152
+ - type: manhattan_f1
2153
+ value: 86.38497652582159
2154
+ - type: manhattan_precision
2155
+ value: 90.29443838604145
2156
+ - type: manhattan_recall
2157
+ value: 82.8
2158
+ - type: max_accuracy
2159
+ value: 99.74158415841585
2160
+ - type: max_ap
2161
+ value: 92.90048959850317
2162
+ - type: max_f1
2163
+ value: 86.38497652582159
2164
+ - task:
2165
+ type: Clustering
2166
+ dataset:
2167
+ name: MTEB StackExchangeClustering
2168
+ type: mteb/stackexchange-clustering
2169
+ config: default
2170
+ split: test
2171
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2172
+ metrics:
2173
+ - type: v_measure
2174
+ value: 63.191648770424216
2175
+ - task:
2176
+ type: Clustering
2177
+ dataset:
2178
+ name: MTEB StackExchangeClusteringP2P
2179
+ type: mteb/stackexchange-clustering-p2p
2180
+ config: default
2181
+ split: test
2182
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2183
+ metrics:
2184
+ - type: v_measure
2185
+ value: 34.02944668730218
2186
+ - task:
2187
+ type: Reranking
2188
+ dataset:
2189
+ name: MTEB StackOverflowDupQuestions
2190
+ type: mteb/stackoverflowdupquestions-reranking
2191
+ config: default
2192
+ split: test
2193
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2194
+ metrics:
2195
+ - type: map
2196
+ value: 50.466386167525265
2197
+ - type: mrr
2198
+ value: 51.19071492233257
2199
+ - task:
2200
+ type: Summarization
2201
+ dataset:
2202
+ name: MTEB SummEval
2203
+ type: mteb/summeval
2204
+ config: default
2205
+ split: test
2206
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2207
+ metrics:
2208
+ - type: cos_sim_pearson
2209
+ value: 30.198022505886435
2210
+ - type: cos_sim_spearman
2211
+ value: 30.40170257939193
2212
+ - type: dot_pearson
2213
+ value: 30.198015316402614
2214
+ - type: dot_spearman
2215
+ value: 30.40170257939193
2216
+ - task:
2217
+ type: Retrieval
2218
+ dataset:
2219
+ name: MTEB TRECCOVID
2220
+ type: trec-covid
2221
+ config: default
2222
+ split: test
2223
+ revision: None
2224
+ metrics:
2225
+ - type: map_at_1
2226
+ value: 0.242
2227
+ - type: map_at_10
2228
+ value: 2.17
2229
+ - type: map_at_100
2230
+ value: 12.221
2231
+ - type: map_at_1000
2232
+ value: 28.63
2233
+ - type: map_at_3
2234
+ value: 0.728
2235
+ - type: map_at_5
2236
+ value: 1.185
2237
+ - type: mrr_at_1
2238
+ value: 94
2239
+ - type: mrr_at_10
2240
+ value: 97
2241
+ - type: mrr_at_100
2242
+ value: 97
2243
+ - type: mrr_at_1000
2244
+ value: 97
2245
+ - type: mrr_at_3
2246
+ value: 97
2247
+ - type: mrr_at_5
2248
+ value: 97
2249
+ - type: ndcg_at_1
2250
+ value: 89
2251
+ - type: ndcg_at_10
2252
+ value: 82.30499999999999
2253
+ - type: ndcg_at_100
2254
+ value: 61.839999999999996
2255
+ - type: ndcg_at_1000
2256
+ value: 53.381
2257
+ - type: ndcg_at_3
2258
+ value: 88.877
2259
+ - type: ndcg_at_5
2260
+ value: 86.05199999999999
2261
+ - type: precision_at_1
2262
+ value: 94
2263
+ - type: precision_at_10
2264
+ value: 87
2265
+ - type: precision_at_100
2266
+ value: 63.38
2267
+ - type: precision_at_1000
2268
+ value: 23.498
2269
+ - type: precision_at_3
2270
+ value: 94
2271
+ - type: precision_at_5
2272
+ value: 92
2273
+ - type: recall_at_1
2274
+ value: 0.242
2275
+ - type: recall_at_10
2276
+ value: 2.302
2277
+ - type: recall_at_100
2278
+ value: 14.979000000000001
2279
+ - type: recall_at_1000
2280
+ value: 49.638
2281
+ - type: recall_at_3
2282
+ value: 0.753
2283
+ - type: recall_at_5
2284
+ value: 1.226
2285
+ - task:
2286
+ type: Retrieval
2287
+ dataset:
2288
+ name: MTEB Touche2020
2289
+ type: webis-touche2020
2290
+ config: default
2291
+ split: test
2292
+ revision: None
2293
+ metrics:
2294
+ - type: map_at_1
2295
+ value: 3.006
2296
+ - type: map_at_10
2297
+ value: 11.805
2298
+ - type: map_at_100
2299
+ value: 18.146
2300
+ - type: map_at_1000
2301
+ value: 19.788
2302
+ - type: map_at_3
2303
+ value: 5.914
2304
+ - type: map_at_5
2305
+ value: 8.801
2306
+ - type: mrr_at_1
2307
+ value: 40.816
2308
+ - type: mrr_at_10
2309
+ value: 56.36600000000001
2310
+ - type: mrr_at_100
2311
+ value: 56.721999999999994
2312
+ - type: mrr_at_1000
2313
+ value: 56.721999999999994
2314
+ - type: mrr_at_3
2315
+ value: 52.041000000000004
2316
+ - type: mrr_at_5
2317
+ value: 54.796
2318
+ - type: ndcg_at_1
2319
+ value: 37.755
2320
+ - type: ndcg_at_10
2321
+ value: 29.863
2322
+ - type: ndcg_at_100
2323
+ value: 39.571
2324
+ - type: ndcg_at_1000
2325
+ value: 51.385999999999996
2326
+ - type: ndcg_at_3
2327
+ value: 32.578
2328
+ - type: ndcg_at_5
2329
+ value: 32.351
2330
+ - type: precision_at_1
2331
+ value: 40.816
2332
+ - type: precision_at_10
2333
+ value: 26.531
2334
+ - type: precision_at_100
2335
+ value: 7.796
2336
+ - type: precision_at_1000
2337
+ value: 1.555
2338
+ - type: precision_at_3
2339
+ value: 32.653
2340
+ - type: precision_at_5
2341
+ value: 33.061
2342
+ - type: recall_at_1
2343
+ value: 3.006
2344
+ - type: recall_at_10
2345
+ value: 18.738
2346
+ - type: recall_at_100
2347
+ value: 48.058
2348
+ - type: recall_at_1000
2349
+ value: 83.41300000000001
2350
+ - type: recall_at_3
2351
+ value: 7.166
2352
+ - type: recall_at_5
2353
+ value: 12.102
2354
+ - task:
2355
+ type: Classification
2356
+ dataset:
2357
+ name: MTEB ToxicConversationsClassification
2358
+ type: mteb/toxic_conversations_50k
2359
+ config: default
2360
+ split: test
2361
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2362
+ metrics:
2363
+ - type: accuracy
2364
+ value: 71.4178
2365
+ - type: ap
2366
+ value: 14.648781342150446
2367
+ - type: f1
2368
+ value: 55.07299194946378
2369
+ - task:
2370
+ type: Classification
2371
+ dataset:
2372
+ name: MTEB TweetSentimentExtractionClassification
2373
+ type: mteb/tweet_sentiment_extraction
2374
+ config: default
2375
+ split: test
2376
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2377
+ metrics:
2378
+ - type: accuracy
2379
+ value: 60.919637804187886
2380
+ - type: f1
2381
+ value: 61.24122013967399
2382
+ - task:
2383
+ type: Clustering
2384
+ dataset:
2385
+ name: MTEB TwentyNewsgroupsClustering
2386
+ type: mteb/twentynewsgroups-clustering
2387
+ config: default
2388
+ split: test
2389
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2390
+ metrics:
2391
+ - type: v_measure
2392
+ value: 49.207896583685695
2393
+ - task:
2394
+ type: PairClassification
2395
+ dataset:
2396
+ name: MTEB TwitterSemEval2015
2397
+ type: mteb/twittersemeval2015-pairclassification
2398
+ config: default
2399
+ split: test
2400
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2401
+ metrics:
2402
+ - type: cos_sim_accuracy
2403
+ value: 86.23114978840078
2404
+ - type: cos_sim_ap
2405
+ value: 74.26624727825818
2406
+ - type: cos_sim_f1
2407
+ value: 68.72377190817083
2408
+ - type: cos_sim_precision
2409
+ value: 64.56400742115028
2410
+ - type: cos_sim_recall
2411
+ value: 73.45646437994723
2412
+ - type: dot_accuracy
2413
+ value: 86.23114978840078
2414
+ - type: dot_ap
2415
+ value: 74.26624032659652
2416
+ - type: dot_f1
2417
+ value: 68.72377190817083
2418
+ - type: dot_precision
2419
+ value: 64.56400742115028
2420
+ - type: dot_recall
2421
+ value: 73.45646437994723
2422
+ - type: euclidean_accuracy
2423
+ value: 86.23114978840078
2424
+ - type: euclidean_ap
2425
+ value: 74.26624714480556
2426
+ - type: euclidean_f1
2427
+ value: 68.72377190817083
2428
+ - type: euclidean_precision
2429
+ value: 64.56400742115028
2430
+ - type: euclidean_recall
2431
+ value: 73.45646437994723
2432
+ - type: manhattan_accuracy
2433
+ value: 86.16558383501221
2434
+ - type: manhattan_ap
2435
+ value: 74.2091943976357
2436
+ - type: manhattan_f1
2437
+ value: 68.64221520524654
2438
+ - type: manhattan_precision
2439
+ value: 63.59135913591359
2440
+ - type: manhattan_recall
2441
+ value: 74.5646437994723
2442
+ - type: max_accuracy
2443
+ value: 86.23114978840078
2444
+ - type: max_ap
2445
+ value: 74.26624727825818
2446
+ - type: max_f1
2447
+ value: 68.72377190817083
2448
+ - task:
2449
+ type: PairClassification
2450
+ dataset:
2451
+ name: MTEB TwitterURLCorpus
2452
+ type: mteb/twitterurlcorpus-pairclassification
2453
+ config: default
2454
+ split: test
2455
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2456
+ metrics:
2457
+ - type: cos_sim_accuracy
2458
+ value: 89.3681841114604
2459
+ - type: cos_sim_ap
2460
+ value: 86.65166387498546
2461
+ - type: cos_sim_f1
2462
+ value: 79.02581944698774
2463
+ - type: cos_sim_precision
2464
+ value: 75.35796605434099
2465
+ - type: cos_sim_recall
2466
+ value: 83.06898675700647
2467
+ - type: dot_accuracy
2468
+ value: 89.3681841114604
2469
+ - type: dot_ap
2470
+ value: 86.65166019802056
2471
+ - type: dot_f1
2472
+ value: 79.02581944698774
2473
+ - type: dot_precision
2474
+ value: 75.35796605434099
2475
+ - type: dot_recall
2476
+ value: 83.06898675700647
2477
+ - type: euclidean_accuracy
2478
+ value: 89.3681841114604
2479
+ - type: euclidean_ap
2480
+ value: 86.65166462876266
2481
+ - type: euclidean_f1
2482
+ value: 79.02581944698774
2483
+ - type: euclidean_precision
2484
+ value: 75.35796605434099
2485
+ - type: euclidean_recall
2486
+ value: 83.06898675700647
2487
+ - type: manhattan_accuracy
2488
+ value: 89.36624364497226
2489
+ - type: manhattan_ap
2490
+ value: 86.65076471274106
2491
+ - type: manhattan_f1
2492
+ value: 79.07408783532733
2493
+ - type: manhattan_precision
2494
+ value: 76.41102972856527
2495
+ - type: manhattan_recall
2496
+ value: 81.92947336002464
2497
+ - type: max_accuracy
2498
+ value: 89.3681841114604
2499
+ - type: max_ap
2500
+ value: 86.65166462876266
2501
+ - type: max_f1
2502
+ value: 79.07408783532733
2503
+ ---
2504
+
2505
+ # BenevolenceMessiah/nomic-embed-text-v1.5-Q8_0-GGUF
2506
+ This model was converted to GGUF format from [`nomic-ai/nomic-embed-text-v1.5`](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2507
+ Refer to the [original model card](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) for more details on the model.
2508
+
2509
+ ## Use with llama.cpp
2510
+ Install llama.cpp through brew (works on Mac and Linux)
2511
+
2512
+ ```bash
2513
+ brew install llama.cpp
2514
+
2515
+ ```
2516
+ Invoke the llama.cpp server or the CLI.
2517
+
2518
+ ### CLI:
2519
+ ```bash
2520
+ llama-cli --hf-repo BenevolenceMessiah/nomic-embed-text-v1.5-Q8_0-GGUF --hf-file nomic-embed-text-v1.5-q8_0.gguf -p "The meaning to life and the universe is"
2521
+ ```
2522
+
2523
+ ### Server:
2524
+ ```bash
2525
+ llama-server --hf-repo BenevolenceMessiah/nomic-embed-text-v1.5-Q8_0-GGUF --hf-file nomic-embed-text-v1.5-q8_0.gguf -c 2048
2526
+ ```
2527
+
2528
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2529
+
2530
+ Step 1: Clone llama.cpp from GitHub.
2531
+ ```
2532
+ git clone https://github.com/ggerganov/llama.cpp
2533
+ ```
2534
+
2535
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2536
+ ```
2537
+ cd llama.cpp && LLAMA_CURL=1 make
2538
+ ```
2539
+
2540
+ Step 3: Run inference through the main binary.
2541
+ ```
2542
+ ./llama-cli --hf-repo BenevolenceMessiah/nomic-embed-text-v1.5-Q8_0-GGUF --hf-file nomic-embed-text-v1.5-q8_0.gguf -p "The meaning to life and the universe is"
2543
+ ```
2544
+ or
2545
+ ```
2546
+ ./llama-server --hf-repo BenevolenceMessiah/nomic-embed-text-v1.5-Q8_0-GGUF --hf-file nomic-embed-text-v1.5-q8_0.gguf -c 2048
2547
+ ```