--- language: - pt license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper small pt - m1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: google/fleurs config: pt_br split: None args: 'config: pt_br, split: test, train' metrics: - name: Wer type: wer value: 8.993465281369 --- # Whisper small pt - m1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2815 - Wer: 8.9935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0892 | 2.8571 | 500 | 0.2241 | 8.9747 | | 0.0041 | 5.7143 | 1000 | 0.2586 | 8.9653 | | 0.0014 | 8.5714 | 1500 | 0.2702 | 8.8665 | | 0.001 | 11.4286 | 2000 | 0.2788 | 8.9512 | | 0.0008 | 14.2857 | 2500 | 0.2815 | 8.9935 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1