BetterThanNothing commited on
Commit
1911f48
·
verified ·
1 Parent(s): 35ceb50

Upload PPO lunar lander trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.53 +/- 25.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x787503625f30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x787503625fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x787503626050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7875036260e0>", "_build": "<function ActorCriticPolicy._build at 0x787503626170>", "forward": "<function ActorCriticPolicy.forward at 0x787503626200>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x787503626290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x787503626320>", "_predict": "<function ActorCriticPolicy._predict at 0x7875036263b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x787503626440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7875036264d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x787503626560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7875035be2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709565724060087035, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMauR74czwA/TczsPQqXZb5P0g+9/We6vAAAAAAAAAAAjfwpPmlCrT4csSO+AXxNvmd0Fz3KBQS+AAAAAAAAAABmLYy94eScut5j57o3zda1rqWGOgOABToAAIA/AACAPzMcqb0pkH26Vg84uay6zbUNkNQ6fspXOAAAgD8AAIA/ZqW3vDhg/7u7bea8bc61PCJ+Ur3+Opc9AACAPwAAgD+mNbW9w3ViukN+sztCSQg49INqO3pE0bUAAIA/AACAPxr7xL3bxk0/U+BwvTfvp76dtbm8YtHtOgAAAAAAAAAATe/7vS8Dej64z2s9QrZ7vkeiBL3CYOo8AAAAAAAAAACAiqK9oWrHPbDgS7y3yiu+RD9dvbajwDsAAAAAAAAAAJoh8Dtck2O6Ej6wO0N52TcDu4G6o2rINQAAgD8AAIA/LZNMPn+xcj9F+tU9EbTOvn4mBT5grES8AAAAAAAAAAAzr8Y9j74VutrUL7uzJ8c3yWi0uWIe6DkAAIA/AACAPxpOej17/v66yX+Qu4dzajwrVXK8QtBMPQAAgD8AAIA/MyE4vfbkPLoVhE45Zss9M2H/kDpzIHS4AACAPwAAgD9mLp27H/XXuU8Nizljgrg0WSsFu7pFobgAAIA/AACAP2YSrb1PKAk/3jWAPcpmb75TE1O8QOIcvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQA2JJoTPCMAWyUTegDjAF0lEdAlIKMbzbvgHV9lChoBkdAZI0RLbpNbmgHTegDaAhHQJSCurOqvNh1fZQoaAZHQGLVZAprk81oB03oA2gIR0CUi5OXE61cdX2UKGgGR0Bj4s3bVSXMaAdN6ANoCEdAlIvf3rUsnXV9lChoBkdAYyycnVoYemgHTegDaAhHQJSNS3z+WGB1fZQoaAZHQGVnBy8zyjJoB03oA2gIR0CUkIrY5DJEdX2UKGgGR0BlS0cZLqUvaAdN6ANoCEdAlJTb9hqj8HV9lChoBkdAYavp9JBgNWgHTegDaAhHQJSWZk1/DtR1fZQoaAZHQEC95XU6PsBoB0voaAhHQJSrBdxAB1d1fZQoaAZHQGiEgNXo1UFoB03oA2gIR0CUq028Zk08dX2UKGgGR0BkQD6nBLwnaAdN6ANoCEdAlKv1Zs9B8nV9lChoBkdAZQulme18cGgHTegDaAhHQJS3kdYGMXJ1fZQoaAZHQGLdqFh5PdloB03oA2gIR0CUwFQ1JlJ6dX2UKGgGR0BJ/wS8J2MbaAdL22gIR0CUwzBf8dgfdX2UKGgGR0BkwuV5a/yoaAdN6ANoCEdAlMRgb6xgRnV9lChoBkdAZiDEYO2AoWgHTegDaAhHQJTEoX9BKL91fZQoaAZHQGJ0jZlFtsNoB03oA2gIR0CUxq9gnc+JdX2UKGgGR0BmnlTgl4TsaAdN6ANoCEdAlMflOj7AL3V9lChoBkdAZoYWqtHQQmgHTegDaAhHQJTJR8gIQe51fZQoaAZHQGJo7zkIX0poB03oA2gIR0CUyXCih37ldX2UKGgGR0Bg06aw2VFAaAdN6ANoCEdAlNEWiYb833V9lChoBkdAYm0lme18cGgHTegDaAhHQJTS4jX4CZF1fZQoaAZHQEaHpN9H+ZRoB0vxaAhHQJTUpJ7LMcJ1fZQoaAZHQGTGkVFhG6RoB03oA2gIR0CU1ocZ9/jLdX2UKGgGR0BjOhuZTho/aAdN6ANoCEdAlNveIZZSvXV9lChoBkdAYjVxhlUZN2gHTegDaAhHQJTeAhwEQoV1fZQoaAZHQGBz9SVGCqZoB03oA2gIR0CU8SGPxQSBdX2UKGgGR0Bk7xfBvaUSaAdN6ANoCEdAlPFVUuL743V9lChoBkdAYx3LB9Cu2mgHTegDaAhHQJTxuumrKeV1fZQoaAZHQGLiFCswL3NoB03oA2gIR0CVCeQiA2AHdX2UKGgGR0BoG3XRPXTWaAdN6ANoCEdAlQ6YVqN6xHV9lChoBkdAZmfKFqSHM2gHTegDaAhHQJUQB5Qgs9V1fZQoaAZHQGNRadc0LtxoB03oA2gIR0CVEEnaFmFrdX2UKGgGR0BmdOl0o0AMaAdN6ANoCEdAlRLuKjzqbHV9lChoBkdAZAqI7/4qPWgHTegDaAhHQJUUb+kxh2J1fZQoaAZHQGWM2vbGm1poB03oA2gIR0CVFifw7T2GdX2UKGgGR0BSRjZUT+NtaAdNFwFoCEdAlRsKA4GUwHV9lChoBkdAZCJuE25xzmgHTegDaAhHQJUfX1+RYA91fZQoaAZHQGPbZdfLLZBoB03oA2gIR0CVIUzlcQiBdX2UKGgGR0Bjq1aY/mknaAdN6ANoCEdAlSM4jB2wFHV9lChoBkdAZkOSwGGEf2gHTegDaAhHQJUksBkqc3F1fZQoaAZHQDqU/wAlv61oB0vFaAhHQJUmFh1DBuZ1fZQoaAZHQGIHeaz/p+toB03oA2gIR0CVKNPEbYK6dX2UKGgGR0BiSCTlkpZwaAdN6ANoCEdAlSpi1eBxxXV9lChoBkdAYgfd6cAimmgHTegDaAhHQJUsUK4QSSN1fZQoaAZHQGRF7rkbPyFoB03oA2gIR0CVLIUcXFcZdX2UKGgGR0BfO3FcY64laAdN6ANoCEdAlUAR1Tzd13V9lChoBkdAZEQoYNy5qmgHTegDaAhHQJVbFJlJ6IF1fZQoaAZHQGRzJU5uIh1oB03oA2gIR0CVXJzKLbYcdX2UKGgGR0Bm3zlRxcVyaAdN6ANoCEdAlVziyhSLqHV9lChoBkdAWYEVqN6w+2gHTegDaAhHQJVfjlPrOZ91fZQoaAZHQGIDmRV6u4hoB03oA2gIR0CVYQvW6K+BdX2UKGgGR0Bmi3gzguRLaAdN6ANoCEdAlWLVtj0+T3V9lChoBkdAZHKSkCV8kWgHTegDaAhHQJVueXSjQAx1fZQoaAZHQGKi66reZXxoB03oA2gIR0CVcMFW4mTldX2UKGgGR0BkHIH/tICmaAdN6ANoCEdAlXLFCHARCnV9lChoBkdAZIUjMV1wHmgHTegDaAhHQJV0Zo6CDmN1fZQoaAZHQGEaCA+Y+jdoB03oA2gIR0CVdfYVqN6xdX2UKGgGR0BmubQw9JSSaAdN6ANoCEdAlXjdCNS62HV9lChoBkdAYlgi2UjcEmgHTegDaAhHQJV6nVz6rNp1fZQoaAZHQGT2geq7yx1oB03oA2gIR0CVfMUyYXwcdX2UKGgGR0BiTU0FbFCLaAdN6ANoCEdAlX0B1LamGnV9lChoBkdAYW0FJQLuyGgHTegDaAhHQJV9e9XcQAd1fZQoaAZHQGBEbNKRMexoB03oA2gIR0CVrtke6qbSdX2UKGgGR0Bl39UADJU6aAdN6ANoCEdAlbB5hKDkEXV9lChoBkdAYuOAvtdAxGgHTegDaAhHQJWwwGcFyJd1fZQoaAZHQGc0jXWe6I5oB03oA2gIR0CVs36kqMFVdX2UKGgGR0BveHxH5JsgaAdNHQJoCEdAlbP36InBtXV9lChoBkdAZIs2jwhGIGgHTegDaAhHQJW06Pq9oOB1fZQoaAZHQGAEhq9GqghoB03oA2gIR0CVto6Lfk3kdX2UKGgGR0BNVY7zTWoWaAdL3GgIR0CVu79EkSmJdX2UKGgGR0AjX27nPmgbaAdLxWgIR0CVvSH8jzI4dX2UKGgGR0Bj+aTMaCL/aAdN6ANoCEdAlb5NsvZh8nV9lChoBkdAZpRqVyFPBWgHTegDaAhHQJW/7JLdvbZ1fZQoaAZHQGJOzBqKxcFoB03oA2gIR0CVwYPTodMkdX2UKGgGR0Bj1Utbs4T9aAdN6ANoCEdAlcLGcriEQHV9lChoBkdAaB9jtoi9qWgHTegDaAhHQJXD8kka/AV1fZQoaAZHQGP7AAIY3vRoB03oA2gIR0CVxj7pFCswdX2UKGgGR0Bg9glOXVslaAdN6ANoCEdAlce/gBLf13V9lChoBkdAYkTJ6po9LmgHTegDaAhHQJXKdZGKAJ91fZQoaAZHQF19PYFqzqtoB03oA2gIR0CVywmoBJZodX2UKGgGR0BhcdEuxrzoaAdN6ANoCEdAlfrk/r0J4XV9lChoBkdAZTom0E5hjWgHTegDaAhHQJX89P69CeF1fZQoaAZHQGQn1vl2eQNoB03oA2gIR0CWAXPJq7AddX2UKGgGR0BkjuxD9fkWaAdN6ANoCEdAlgMJrk8zRHV9lChoBkdAYn90yxiXpmgHTegDaAhHQJYFCFnIyTJ1fZQoaAZHQFAXVTaTOgRoB0vnaAhHQJYKUz9CNS91fZQoaAZHQGNz7lq8DjloB03oA2gIR0CWCy+IuXeFdX2UKGgGR0Bi7pradtl7aAdN6ANoCEdAlgyxuXNTtXV9lChoBkdAYgvbDdgv12gHTegDaAhHQJYN6cc2itd1fZQoaAZHQEoF+glF+d9oB0u8aAhHQJYOzG8274B1fZQoaAZHQGB485sCT2ZoB03oA2gIR0CWD4MrVe8gdX2UKGgGR0BlvJCKJl8PaAdN6ANoCEdAlhEOfqX4TXV9lChoBkdAZf/J04iosWgHTegDaAhHQJYST0cwQDp1fZQoaAZHQGL9UVJtix5oB03oA2gIR0CWE3FDfFaTdX2UKGgGR0A8HvgWJrLyaAdLyWgIR0CWFHsIVuaXdX2UKGgGR0BkUtb1RLsbaAdN6ANoCEdAlhWJGrjo6nV9lChoBkdAZlItRvWH12gHTegDaAhHQJYWvH7xd6d1fZQoaAZHQGNCC04R28toB03oA2gIR0CWGGRYigTRdX2UKGgGR0Bht82gnMMaaAdN6ANoCEdAlhjGHxjJ+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97672293c24e191225021dfdf086ed8a50211f4ad6e3c0bba53c6e344a7ca749
3
+ size 148076
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x787503625f30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x787503625fc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x787503626050>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7875036260e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x787503626170>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x787503626200>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x787503626290>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x787503626320>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7875036263b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x787503626440>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7875036264d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x787503626560>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7875035be2c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1709565724060087035,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMauR74czwA/TczsPQqXZb5P0g+9/We6vAAAAAAAAAAAjfwpPmlCrT4csSO+AXxNvmd0Fz3KBQS+AAAAAAAAAABmLYy94eScut5j57o3zda1rqWGOgOABToAAIA/AACAPzMcqb0pkH26Vg84uay6zbUNkNQ6fspXOAAAgD8AAIA/ZqW3vDhg/7u7bea8bc61PCJ+Ur3+Opc9AACAPwAAgD+mNbW9w3ViukN+sztCSQg49INqO3pE0bUAAIA/AACAPxr7xL3bxk0/U+BwvTfvp76dtbm8YtHtOgAAAAAAAAAATe/7vS8Dej64z2s9QrZ7vkeiBL3CYOo8AAAAAAAAAACAiqK9oWrHPbDgS7y3yiu+RD9dvbajwDsAAAAAAAAAAJoh8Dtck2O6Ej6wO0N52TcDu4G6o2rINQAAgD8AAIA/LZNMPn+xcj9F+tU9EbTOvn4mBT5grES8AAAAAAAAAAAzr8Y9j74VutrUL7uzJ8c3yWi0uWIe6DkAAIA/AACAPxpOej17/v66yX+Qu4dzajwrVXK8QtBMPQAAgD8AAIA/MyE4vfbkPLoVhE45Zss9M2H/kDpzIHS4AACAPwAAgD9mLp27H/XXuU8Nizljgrg0WSsFu7pFobgAAIA/AACAP2YSrb1PKAk/3jWAPcpmb75TE1O8QOIcvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQA2JJoTPCMAWyUTegDjAF0lEdAlIKMbzbvgHV9lChoBkdAZI0RLbpNbmgHTegDaAhHQJSCurOqvNh1fZQoaAZHQGLVZAprk81oB03oA2gIR0CUi5OXE61cdX2UKGgGR0Bj4s3bVSXMaAdN6ANoCEdAlIvf3rUsnXV9lChoBkdAYyycnVoYemgHTegDaAhHQJSNS3z+WGB1fZQoaAZHQGVnBy8zyjJoB03oA2gIR0CUkIrY5DJEdX2UKGgGR0BlS0cZLqUvaAdN6ANoCEdAlJTb9hqj8HV9lChoBkdAYavp9JBgNWgHTegDaAhHQJSWZk1/DtR1fZQoaAZHQEC95XU6PsBoB0voaAhHQJSrBdxAB1d1fZQoaAZHQGiEgNXo1UFoB03oA2gIR0CUq028Zk08dX2UKGgGR0BkQD6nBLwnaAdN6ANoCEdAlKv1Zs9B8nV9lChoBkdAZQulme18cGgHTegDaAhHQJS3kdYGMXJ1fZQoaAZHQGLdqFh5PdloB03oA2gIR0CUwFQ1JlJ6dX2UKGgGR0BJ/wS8J2MbaAdL22gIR0CUwzBf8dgfdX2UKGgGR0BkwuV5a/yoaAdN6ANoCEdAlMRgb6xgRnV9lChoBkdAZiDEYO2AoWgHTegDaAhHQJTEoX9BKL91fZQoaAZHQGJ0jZlFtsNoB03oA2gIR0CUxq9gnc+JdX2UKGgGR0BmnlTgl4TsaAdN6ANoCEdAlMflOj7AL3V9lChoBkdAZoYWqtHQQmgHTegDaAhHQJTJR8gIQe51fZQoaAZHQGJo7zkIX0poB03oA2gIR0CUyXCih37ldX2UKGgGR0Bg06aw2VFAaAdN6ANoCEdAlNEWiYb833V9lChoBkdAYm0lme18cGgHTegDaAhHQJTS4jX4CZF1fZQoaAZHQEaHpN9H+ZRoB0vxaAhHQJTUpJ7LMcJ1fZQoaAZHQGTGkVFhG6RoB03oA2gIR0CU1ocZ9/jLdX2UKGgGR0BjOhuZTho/aAdN6ANoCEdAlNveIZZSvXV9lChoBkdAYjVxhlUZN2gHTegDaAhHQJTeAhwEQoV1fZQoaAZHQGBz9SVGCqZoB03oA2gIR0CU8SGPxQSBdX2UKGgGR0Bk7xfBvaUSaAdN6ANoCEdAlPFVUuL743V9lChoBkdAYx3LB9Cu2mgHTegDaAhHQJTxuumrKeV1fZQoaAZHQGLiFCswL3NoB03oA2gIR0CVCeQiA2AHdX2UKGgGR0BoG3XRPXTWaAdN6ANoCEdAlQ6YVqN6xHV9lChoBkdAZmfKFqSHM2gHTegDaAhHQJUQB5Qgs9V1fZQoaAZHQGNRadc0LtxoB03oA2gIR0CVEEnaFmFrdX2UKGgGR0BmdOl0o0AMaAdN6ANoCEdAlRLuKjzqbHV9lChoBkdAZAqI7/4qPWgHTegDaAhHQJUUb+kxh2J1fZQoaAZHQGWM2vbGm1poB03oA2gIR0CVFifw7T2GdX2UKGgGR0BSRjZUT+NtaAdNFwFoCEdAlRsKA4GUwHV9lChoBkdAZCJuE25xzmgHTegDaAhHQJUfX1+RYA91fZQoaAZHQGPbZdfLLZBoB03oA2gIR0CVIUzlcQiBdX2UKGgGR0Bjq1aY/mknaAdN6ANoCEdAlSM4jB2wFHV9lChoBkdAZkOSwGGEf2gHTegDaAhHQJUksBkqc3F1fZQoaAZHQDqU/wAlv61oB0vFaAhHQJUmFh1DBuZ1fZQoaAZHQGIHeaz/p+toB03oA2gIR0CVKNPEbYK6dX2UKGgGR0BiSCTlkpZwaAdN6ANoCEdAlSpi1eBxxXV9lChoBkdAYgfd6cAimmgHTegDaAhHQJUsUK4QSSN1fZQoaAZHQGRF7rkbPyFoB03oA2gIR0CVLIUcXFcZdX2UKGgGR0BfO3FcY64laAdN6ANoCEdAlUAR1Tzd13V9lChoBkdAZEQoYNy5qmgHTegDaAhHQJVbFJlJ6IF1fZQoaAZHQGRzJU5uIh1oB03oA2gIR0CVXJzKLbYcdX2UKGgGR0Bm3zlRxcVyaAdN6ANoCEdAlVziyhSLqHV9lChoBkdAWYEVqN6w+2gHTegDaAhHQJVfjlPrOZ91fZQoaAZHQGIDmRV6u4hoB03oA2gIR0CVYQvW6K+BdX2UKGgGR0Bmi3gzguRLaAdN6ANoCEdAlWLVtj0+T3V9lChoBkdAZHKSkCV8kWgHTegDaAhHQJVueXSjQAx1fZQoaAZHQGKi66reZXxoB03oA2gIR0CVcMFW4mTldX2UKGgGR0BkHIH/tICmaAdN6ANoCEdAlXLFCHARCnV9lChoBkdAZIUjMV1wHmgHTegDaAhHQJV0Zo6CDmN1fZQoaAZHQGEaCA+Y+jdoB03oA2gIR0CVdfYVqN6xdX2UKGgGR0BmubQw9JSSaAdN6ANoCEdAlXjdCNS62HV9lChoBkdAYlgi2UjcEmgHTegDaAhHQJV6nVz6rNp1fZQoaAZHQGT2geq7yx1oB03oA2gIR0CVfMUyYXwcdX2UKGgGR0BiTU0FbFCLaAdN6ANoCEdAlX0B1LamGnV9lChoBkdAYW0FJQLuyGgHTegDaAhHQJV9e9XcQAd1fZQoaAZHQGBEbNKRMexoB03oA2gIR0CVrtke6qbSdX2UKGgGR0Bl39UADJU6aAdN6ANoCEdAlbB5hKDkEXV9lChoBkdAYuOAvtdAxGgHTegDaAhHQJWwwGcFyJd1fZQoaAZHQGc0jXWe6I5oB03oA2gIR0CVs36kqMFVdX2UKGgGR0BveHxH5JsgaAdNHQJoCEdAlbP36InBtXV9lChoBkdAZIs2jwhGIGgHTegDaAhHQJW06Pq9oOB1fZQoaAZHQGAEhq9GqghoB03oA2gIR0CVto6Lfk3kdX2UKGgGR0BNVY7zTWoWaAdL3GgIR0CVu79EkSmJdX2UKGgGR0AjX27nPmgbaAdLxWgIR0CVvSH8jzI4dX2UKGgGR0Bj+aTMaCL/aAdN6ANoCEdAlb5NsvZh8nV9lChoBkdAZpRqVyFPBWgHTegDaAhHQJW/7JLdvbZ1fZQoaAZHQGJOzBqKxcFoB03oA2gIR0CVwYPTodMkdX2UKGgGR0Bj1Utbs4T9aAdN6ANoCEdAlcLGcriEQHV9lChoBkdAaB9jtoi9qWgHTegDaAhHQJXD8kka/AV1fZQoaAZHQGP7AAIY3vRoB03oA2gIR0CVxj7pFCswdX2UKGgGR0Bg9glOXVslaAdN6ANoCEdAlce/gBLf13V9lChoBkdAYkTJ6po9LmgHTegDaAhHQJXKdZGKAJ91fZQoaAZHQF19PYFqzqtoB03oA2gIR0CVywmoBJZodX2UKGgGR0BhcdEuxrzoaAdN6ANoCEdAlfrk/r0J4XV9lChoBkdAZTom0E5hjWgHTegDaAhHQJX89P69CeF1fZQoaAZHQGQn1vl2eQNoB03oA2gIR0CWAXPJq7AddX2UKGgGR0BkjuxD9fkWaAdN6ANoCEdAlgMJrk8zRHV9lChoBkdAYn90yxiXpmgHTegDaAhHQJYFCFnIyTJ1fZQoaAZHQFAXVTaTOgRoB0vnaAhHQJYKUz9CNS91fZQoaAZHQGNz7lq8DjloB03oA2gIR0CWCy+IuXeFdX2UKGgGR0Bi7pradtl7aAdN6ANoCEdAlgyxuXNTtXV9lChoBkdAYgvbDdgv12gHTegDaAhHQJYN6cc2itd1fZQoaAZHQEoF+glF+d9oB0u8aAhHQJYOzG8274B1fZQoaAZHQGB485sCT2ZoB03oA2gIR0CWD4MrVe8gdX2UKGgGR0BlvJCKJl8PaAdN6ANoCEdAlhEOfqX4TXV9lChoBkdAZf/J04iosWgHTegDaAhHQJYST0cwQDp1fZQoaAZHQGL9UVJtix5oB03oA2gIR0CWE3FDfFaTdX2UKGgGR0A8HvgWJrLyaAdLyWgIR0CWFHsIVuaXdX2UKGgGR0BkUtb1RLsbaAdN6ANoCEdAlhWJGrjo6nV9lChoBkdAZlItRvWH12gHTegDaAhHQJYWvH7xd6d1fZQoaAZHQGNCC04R28toB03oA2gIR0CWGGRYigTRdX2UKGgGR0Bht82gnMMaaAdN6ANoCEdAlhjGHxjJ+3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b01c22ab30b2f1fc62e43c1a49b4671f834fcc33ae491c793ed49c2cac97733
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd604c8757f16f73d960577cada52cce8ea02b4bc254047c12c1df05cc640e58
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (185 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.5262453, "std_reward": 25.870570541517427, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-04T15:46:25.540158"}