HuggingSara
commited on
Commit
•
aa49649
1
Parent(s):
0e1e8c7
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ar
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- medical
|
10 |
+
license: cc-by-nc-sa-4.0
|
11 |
+
---
|
12 |
+
## Model Card for BiMediX-Bilingual
|
13 |
+
|
14 |
+
### Model Details
|
15 |
+
- **Name:** BiMediX
|
16 |
+
- **Version:** 1.0
|
17 |
+
- **Type:** Bilingual Medical Mixture of Experts Large Language Model (LLM)
|
18 |
+
- **Languages:** English, Arabic
|
19 |
+
- **Model Architecture:** [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
|
20 |
+
- **Training Data:** BiMed1.3M, a bilingual dataset with diverse medical interactions.
|
21 |
+
|
22 |
+
### Intended Use
|
23 |
+
- **Primary Use:** Medical interactions in both English and Arabic.
|
24 |
+
- **Capabilities:** MCQA, closed QA and chats.
|
25 |
+
|
26 |
+
## Getting Started
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
30 |
+
model_id = "BiMediX/BiMediX-Bi"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
33 |
+
text = "Hello BiMediX! I've been experiencing increased tiredness in the past week."
|
34 |
+
inputs = tokenizer(text, return_tensors="pt")
|
35 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
36 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
37 |
+
```
|
38 |
+
|
39 |
+
### Training Procedure
|
40 |
+
- **Dataset:** BiMed1.3M, 632 million healthcare specialized tokens.
|
41 |
+
- **QLoRA Adaptation:** Implements a low-rank adaptation technique, incorporating learnable low-rank adapter weights into the experts and the routing network. This results in training about 4% of the original parameters.
|
42 |
+
- **Training Resources:** The model underwent training on approximately 632 million tokens from the Arabic-English corpus, including 288 million tokens exclusively for English.
|
43 |
+
|
44 |
+
### Model Performance
|
45 |
+
- **Benchmarks:** Outperforms the baseline model and Jais-30B in medical evaluations.
|
46 |
+
|
47 |
+
| **Model** | **CKG** | **CBio** | **CMed** | **MedGen** | **ProMed** | **Ana** | **MedMCQA** | **MedQA** | **PubmedQA** | **AVG** |
|
48 |
+
|-----------------------------------|------------|-----------|-----------|-------------|-------------|---------|-------------|-----------|--------------|---------|
|
49 |
+
| Jais-30B | 57.4 | 55.2 | 46.2 | 55.0 | 46.0 | 48.9 | 40.2 | 31.0 | 75.5 | 50.6 |
|
50 |
+
| Mixtral-8x7B| 59.1 | 57.6 | 52.6 | 59.5 | 53.3 | 54.4 | 43.2 | 40.6 | 74.7 | 55.0 |
|
51 |
+
| **BiMediX (Bilingual)** | **70.6** | **72.2** | **59.3** | **74.0** | **64.2** | **59.6**| **55.8** | **54.0** | **78.6** | **65.4**|
|
52 |
+
|
53 |
+
### Safety and Ethical Considerations
|
54 |
+
- **Potential issues**: hallucinations, toxicity, stereotypes.
|
55 |
+
- **Usage:** Research purposes only.
|
56 |
+
|
57 |
+
### Accessibility
|
58 |
+
- **Availability:** [BiMediX GitHub Repository](https://github.com/mbzuai-oryx/BiMediX).
|
59 |
+
- arxiv.org/abs/2402.13253
|
60 |
+
|
61 |
+
### Authors
|
62 |
+
Sara Pieri, Sahal Shaji Mullappilly, Fahad Shahbaz Khan, Rao Muhammad Anwer Salman Khan, Timothy Baldwin, Hisham Cholakkal
|
63 |
+
**Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI)**
|