File size: 5,719 Bytes
3caa1d9
 
 
d6a879d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
license: mit
---



## RS-LLaVA: Large Vision Language Model for Joint Captioning and Question Answering in Remote Sensing Imagery

- **Repository:** https://github.com/BigData-KSU/RS-LLaVA
- **Paper:** https://www.mdpi.com/2072-4292/16/9/1477
- **Demo:** Soon.


## How to Get Started with the Model

### Install

1. Clone this repository and navigate to RS-LLaVA folder

```
git clone https://github.com/BigData-KSU/RS-LLaVA.git
cd RS-LLaVA
```

2. Install Package

```
conda create -n rs-llava python=3.10 -y
conda activate rs-llava
pip install --upgrade pip  # enable PEP 660 support
```

3. Install additional packages
   
```
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install transformers==4.35
pip install einops
pip inastall SentencePiece
pip install accelerate
pip install peft
```

---

### Inference

Use the code below to get started with the model.


```python 

import torch
import os
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import math

######## model here.................
model_path = 'BigData-KSU/RS-llava-v1.5-7b-LoRA'

model_base = 'Intel/neural-chat-7b-v3-3'

#### Further instrcutions here..........
conv_mode = 'llava_v1'
disable_torch_init()

model_name = get_model_name_from_path(model_path)
print('model name', model_name)
print('model base', model_base)


tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name)


def chat_with_RS_LLaVA(cur_prompt,image_name):
    # Prepare the input text, adding image-related tokens if needed
    image_mem = Image.open(image_name)
    image_tensor = image_processor.preprocess(image_mem, return_tensors='pt')['pixel_values'][0]

    if model.config.mm_use_im_start_end:
        cur_prompt = f"{DEFAULT_IM_START_TOKEN} {DEFAULT_IMAGE_TOKEN} {DEFAULT_IM_END_TOKEN}\n{cur_prompt}"
    else:
        cur_prompt = f"{DEFAULT_IMAGE_TOKEN}\n{cur_prompt}"

    # Create a copy of the conversation template
    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], cur_prompt)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    # Process image inputs if provided
    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0) .cuda()
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=image_tensor.unsqueeze(0).half().cuda(),
            do_sample=True,
            temperature=0.2,
            top_p=None,
            num_beams=1,
            no_repeat_ngram_size=3,
            max_new_tokens=2048,
            use_cache=True)

    input_token_len = input_ids.shape[1]
    n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
    if n_diff_input_output > 0:
        print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
    outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
    outputs = outputs.strip()

    return outputs


if __name__ == "__main__":


    print('Model input...............')
    cur_prompt='Generate three questions and answers about the content of this image. Then, compile a summary.'
    image_name='assets/example_images/parking_lot_010.jpg'


    outputs=chat_with_RS_LLaVA(cur_prompt,image_name)
    print('Model Response.....')
    print(outputs)


```


## Training Details

Training RS-LLaVa is carried out in three stages:

#### Stage 1: Pretraining (Feature alignment) stage:
Using LAION/CC/SBU BLIP-Caption Concept-balanced 558K dataset, and two RS datasets, [NWPU](https://github.com/HaiyanHuang98/NWPU-Captions) and [RSICD](https://huggingface.co/datasets/arampacha/rsicd). 


| Dataset | Size | Link |
| --- | --- |--- |
|CC-3M Concept-balanced 595K|211 MB|[Link](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md)|
|NWPU-RSICD-Pretrain|16.6 MB|[Link](https://huggingface.co/datasets/BigData-KSU/RS-instructions-dataset/blob/main/NWPU-RSICD-pretrain.json)|


#### Stage 2: Visual Instruction Tuning:
To teach the model to follow instructions, we used the proposed RS-Instructions Dataset plus LLaVA-Instruct-150K dataset.

| Dataset | Size | Link |
| --- | --- |--- |
|RS-Instructions|91.3 MB|[Link](https://huggingface.co/datasets/BigData-KSU/RS-instructions-dataset/blob/main/NWPU-RSICD-UAV-UCM-LR-DOTA-intrcutions.json)|
|llava_v1_5_mix665k|1.03 GB|[Link](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json)|

#### Stage 3: Downstram Task Tuning: 
In this stage, the model is fine-tuned on one of the downstream tasks (e.g., RS image captioning or VQA)



## Citation
**BibTeX:**
```bibtex
@Article{rs16091477,
AUTHOR = {Bazi, Yakoub and Bashmal, Laila and Al Rahhal, Mohamad Mahmoud and Ricci, Riccardo and Melgani, Farid},
TITLE = {RS-LLaVA: A Large Vision-Language Model for Joint Captioning and Question Answering in Remote Sensing Imagery},
JOURNAL = {Remote Sensing},
VOLUME = {16},
YEAR = {2024},
NUMBER = {9},
ARTICLE-NUMBER = {1477},
URL = {https://www.mdpi.com/2072-4292/16/9/1477},
ISSN = {2072-4292},
DOI = {10.3390/rs16091477}
}

```