Bill010602 commited on
Commit
2586229
·
1 Parent(s): 430919f

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1165.82 +/- 261.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be55c4c62926870963c9592ff36dd75969cabc35cc9dcb1c9aaa351c4db9a7ba
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa65471dca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa65471dd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa65471ddc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa65471de50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa65471dee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa65471df70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa654722040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6547220d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa654722160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6547221f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa654722280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa654722310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fa65471a450>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674096474530092705,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALOanT6NU7i/zOzQv3FPsb2UDvC/Ai1kP2KU8L0qlDS/BhGKvsmMfj+akG0/bgYIvpLVPD8XhdS9LFgRPxyp3Dz7E6o/aTpwvZWFFr+0iUe/0YDNP8K+Jbxnc60+6b5PvvrQGD+76pM+KiwdP8Plab90CuE//B6iO2a2Ej86xuI/rLGCviqkrD8D9Ca/Bvuwv8K8vT+MdYE/Qfe9P2kMmj6dzl+6r/8OPtQWEj9Logs6Or9kvgj2i79GoIS/YnZEP7qiKz+WX9i/fghJv6DxiDz60Bg/u+qTPiosHT/D5Wm/Ok9bP61Csz0g3Rs/vxq9P2gjK74VvEQ/Hlp5vpGzfL9lXoc/jwMEPvVEYD9GBwk+aaVXO1UXSb9bWwo/lJw+PtUJSj6/E5i/9ArUvoJl0j6z3mQ/oni3v2L//D74tuq++tAYP7vqkz4qLB0/w+Vpv0gg3b7V9Qe/PodMPkduL7/J+qa/BKDFPaU0lz5esbM/G6Ohv1lPNT91yGq/zBQ1P1GAir/yxSu97noXv+mtNj8R3K8/5ANLvdfXSj9JpRi/14fnPEHpuzudKiG/c/4svvrQGD+76pM++XvQv3YYjD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACe/mo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWRBfvQAAAADyvPW/AAAAALS3zD0AAAAAuZraPwAAAAALJli9AAAAAJXbAEAAAAAAflWGPQAAAACpT/i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALnDqtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLNvxT0AAAAA1cbnvwAAAACELD09AAAAADCB9D8AAAAAGnzpPQAAAAB98fw/AAAAAIHUBT4AAAAANw/9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAELiMrcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBIywo+AAAAAKm3+r8AAAAAjxiovQAAAAAWfuw/AAAAAD9szL0AAAAAhFb0PwAAAAA1vA8+AAAAAOi0678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLyZg0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFEgJPAAAAADgrey/AAAAANtHo70AAAAALMDfPwAAAACv1aK8AAAAACjM/z8AAAAABs4AvgAAAAA58/6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHwHPyLAHmmMAWyUTegDjAF0lEdApeKGcnVoYnV9lChoBkdAki7DJU5uImgHTegDaAhHQKXkzWsA/9p1fZQoaAZHQI8Mj2lEZzhoB03oA2gIR0Cl5VoZQ53ldX2UKGgGR0COUK+B6KLsaAdN6ANoCEdApes/AqNIb3V9lChoBkdAk0wb+PzWgGgHTegDaAhHQKXw/2f02+B1fZQoaAZHQJIQ00IkZ75oB03oA2gIR0Cl8n5MDfWMdX2UKGgGR0CFjHuFYdQwaAdN6ANoCEdApfLYogFHKHV9lChoBkdAlBjoInjQzGgHTegDaAhHQKX24x/NJOF1fZQoaAZHQJSqeIfr8ixoB03oA2gIR0Cl/LfUONHZdX2UKGgGR0CTLZsByS3caAdN6ANoCEdApf4wIdELIHV9lChoBkdAk0/iYG+sYGgHTegDaAhHQKX+i5f+jud1fZQoaAZHQJLpI7Rv3rVoB03oA2gIR0CmAp3hXKbKdX2UKGgGR0CSccnyup0faAdN6ANoCEdApgjbJ0W/J3V9lChoBkdAkzjinUDuB2gHTegDaAhHQKYKT+OwPiF1fZQoaAZHQJN9iP5pJwtoB03oA2gIR0CmCqcVxjridX2UKGgGR0CTBZFYuCf6aAdN6ANoCEdApg6ndEb5unV9lChoBkdAjezhD5TIemgHTegDaAhHQKYUUvh60IF1fZQoaAZHQJHNZgSeyzJoB03oA2gIR0CmFcAVfu1GdX2UKGgGR0CQxpjBl+VkaAdN6ANoCEdAphYRLwnYx3V9lChoBkdAkAcaj3225WgHTegDaAhHQKYaGfChvit1fZQoaAZHQJPnO4LCvX9oB03oA2gIR0CmH+HhsImgdX2UKGgGR0CS3yT7VJ+VaAdN6ANoCEdApiFeqR2bG3V9lChoBkdAktAn9rGipWgHTegDaAhHQKYhtUPQOWl1fZQoaAZHQJBi85QxesxoB03oA2gIR0CmJcvs7dSEdX2UKGgGR0CRoOEdNnGsaAdN6ANoCEdApivF8/lhgHV9lChoBkdAlIFaf4AS4GgHTegDaAhHQKYtUW2w3YN1fZQoaAZHQJK4isXBP9FoB03oA2gIR0CmLarvkRzzdX2UKGgGR0CSgf/cFhXsaAdN6ANoCEdApjHuuLaVU3V9lChoBkdAlCRQF1SwW2gHTegDaAhHQKY35KU3XI51fZQoaAZHQJN/8CU5dW1oB03oA2gIR0CmOVD7qIJrdX2UKGgGR0CUGxKISDh+aAdN6ANoCEdApjmhXOnl4nV9lChoBkdAlEDWvjfelGgHTegDaAhHQKY9oRHww0x1fZQoaAZHQJJtuFSKm9BoB03oA2gIR0CmQ6Kp1ie/dX2UKGgGR0CSVk6cRUWEaAdN6ANoCEdApkUgsmOU+3V9lChoBkdAkvAhAOavzWgHTegDaAhHQKZFcb6xgRd1fZQoaAZHQJJ3g+xGDthoB03oA2gIR0CmSYlzEJjUdX2UKGgGR0CSfbiNKh+OaAdN6ANoCEdApk930Zm7KHV9lChoBkdAkdM4nv2GqWgHTegDaAhHQKZRAhnJ1aJ1fZQoaAZHQJRdMLQXyiFoB03oA2gIR0CmUVknLJS0dX2UKGgGR0CTc+Ssr/bTaAdN6ANoCEdAplW0GX5WR3V9lChoBkdAkiTgwTM7l2gHTegDaAhHQKZbfuiN83N1fZQoaAZHQJK5C0qpcX5oB03oA2gIR0CmXP/tQbdadX2UKGgGR0CTYmPuG9HuaAdN6ANoCEdApl1QIa99MXV9lChoBkdAkIW06HTJAGgHTegDaAhHQKZhT3X7LuB1fZQoaAZHQJGEzLhaTwFoB03oA2gIR0CmZzkWRA8kdX2UKGgGR0CRZdAmzBykaAdN6ANoCEdApmjBKSPluHV9lChoBkdAkmUUEs8PnWgHTegDaAhHQKZpEmfoRqZ1fZQoaAZHQI59lHvttyhoB03oA2gIR0CmbQtmL9/CdX2UKGgGR0CQk9UY8+zMaAdN6ANoCEdApnLsXgtOEnV9lChoBkdAkeNeiBXjl2gHTegDaAhHQKZ0azQeFL51fZQoaAZHQJHlV92HLzRoB03oA2gIR0CmdMuIqLCOdX2UKGgGR0COhYQaJhvzaAdN6ANoCEdApnjIHgP3BnV9lChoBkdAjdHJMQEpzGgHTegDaAhHQKZ+xCyhSLt1fZQoaAZHQJJdgoc7yQRoB03oA2gIR0CmgDp8v24/dX2UKGgGR0CRemsr/bTMaAdN6ANoCEdApoCRiNKh+XV9lChoBkdAkoUSCrcTJ2gHTegDaAhHQKaEmGZeAut1fZQoaAZHQJBqBY+0PYpoB03oA2gIR0Cmim3b212JdX2UKGgGR0CRGv0OVgQZaAdN6ANoCEdApov3WSU1RHV9lChoBkdAkA+FZ5iVjmgHTegDaAhHQKaMT+Q2dd51fZQoaAZHQJBPo6Kcd5poB03oA2gIR0CmkHzkp7TldX2UKGgGR0CQk+ttQ9A5aAdN6ANoCEdAppYvx+az/3V9lChoBkdAjRyO2iL2pWgHTegDaAhHQKaXoxyGSIR1fZQoaAZHQJJfkfeUILRoB03oA2gIR0Cml/ZG8VYZdX2UKGgGR0CSWUO1fE4vaAdN6ANoCEdAppvw5FPSD3V9lChoBkdAkkid+TeO42gHTegDaAhHQKahysCkoF51fZQoaAZHQJFio95hScdoB03oA2gIR0Cmo0ARsdkrdX2UKGgGR0CQH17qY7aJaAdN6ANoCEdApqOUjPfKp3V9lChoBkdAkW9pQUHpr2gHTegDaAhHQKanm9zOopB1fZQoaAZHQJCGBoakyk9oB03oA2gIR0CmrdTd+G47dX2UKGgGR0CRKxVOsT37aAdN6ANoCEdApq9n4/NZ/3V9lChoBkdAkSXAk9lmOGgHTegDaAhHQKavxYYixFB1fZQoaAZHQJF1NvIfbK1oB03oA2gIR0CmtHkpRXOodX2UKGgGR0CRz4wfyPMjaAdN6ANoCEdAprqtO/L1VnV9lChoBkdAk430L+glGGgHTegDaAhHQKa8UTsY2sJ1fZQoaAZHQJJVd4SpR41oB03oA2gIR0CmvK6zE74jdX2UKGgGR0CQyISyt3fRaAdN6ANoCEdApsD3J1aGH3V9lChoBkdAkKssvmHP/2gHTegDaAhHQKbHB9mYjSp1fZQoaAZHQJIWYatLcsVoB03oA2gIR0CmyKTAFgUldX2UKGgGR0CRQozMA3kxaAdN6ANoCEdApsj5KL8763V9lChoBkdAkjMnZwn6VWgHTegDaAhHQKbNLPC2tuF1fZQoaAZHQJIoy6H0se5oB03oA2gIR0Cm0yBG6PKddX2UKGgGR0CSkSujASFoaAdN6ANoCEdAptSvEIgNgHV9lChoBkdAkhVqMrEtNGgHTegDaAhHQKbVBqB3A211fZQoaAZHQJJpO/WUbDNoB03oA2gIR0Cm2VPB7/n4dX2UKGgGR0CSukPxx1gZaAdN6ANoCEdApt9E1yeZonV9lChoBkdAk7KyjgydnWgHTegDaAhHQKbgxuy/sVt1fZQoaAZHQJWNP5mAbyZoB03oA2gIR0Cm4SOIqLCOdX2UKGgGR0CVYZ8CgbqAaAdN6ANoCEdApuVQwK0D2nV9lChoBkdAksCh1DBuXWgHTegDaAhHQKbrZgRbr1N1fZQoaAZHQJNaEujASFpoB03oA2gIR0Cm7PIHC4z8dX2UKGgGR0CSIdBun/DMaAdN6ANoCEdApu1NyLhrFnV9lChoBkdAk9i0h7mdRWgHTegDaAhHQKbxi814xDd1fZQoaAZHQJSUVeeFtbdoB03oA2gIR0Cm97R33YcvdX2UKGgGR0CTnXckMTewaAdN6ANoCEdApvk4pDu0C3V9lChoBkdAcdbLE1l5GGgHTegDaAhHQKb5k4qgAZN1fZQoaAZHwEADVJ+UhV5oB0tvaAhHQKb6iZPVNHp1fZQoaAZHQJOnJdszl91oB03oA2gIR0Cm/azmnwXqdX2UKGgGR0CTCQtHhCMQaAdN6ANoCEdApwOba9K28nV9lChoBkdAj/ExQrMC92gHTegDaAhHQKcFcCtihFp1fZQoaAZHQIzMCRfWtltoB03oA2gIR0CnBmqjrRjSdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f563210aa4eb88fb8addccb5e8b35aaaf99d6b159c0b9adf8e756a9504a2d8e4
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea142c50e58bb7836ba8f53a849d87163a8058544ee417db9dfde05021a815b2
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa65471dca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa65471dd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa65471ddc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa65471de50>", "_build": "<function ActorCriticPolicy._build at 0x7fa65471dee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa65471df70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa654722040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6547220d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa654722160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6547221f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa654722280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa654722310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa65471a450>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674096474530092705, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALOanT6NU7i/zOzQv3FPsb2UDvC/Ai1kP2KU8L0qlDS/BhGKvsmMfj+akG0/bgYIvpLVPD8XhdS9LFgRPxyp3Dz7E6o/aTpwvZWFFr+0iUe/0YDNP8K+Jbxnc60+6b5PvvrQGD+76pM+KiwdP8Plab90CuE//B6iO2a2Ej86xuI/rLGCviqkrD8D9Ca/Bvuwv8K8vT+MdYE/Qfe9P2kMmj6dzl+6r/8OPtQWEj9Logs6Or9kvgj2i79GoIS/YnZEP7qiKz+WX9i/fghJv6DxiDz60Bg/u+qTPiosHT/D5Wm/Ok9bP61Csz0g3Rs/vxq9P2gjK74VvEQ/Hlp5vpGzfL9lXoc/jwMEPvVEYD9GBwk+aaVXO1UXSb9bWwo/lJw+PtUJSj6/E5i/9ArUvoJl0j6z3mQ/oni3v2L//D74tuq++tAYP7vqkz4qLB0/w+Vpv0gg3b7V9Qe/PodMPkduL7/J+qa/BKDFPaU0lz5esbM/G6Ohv1lPNT91yGq/zBQ1P1GAir/yxSu97noXv+mtNj8R3K8/5ANLvdfXSj9JpRi/14fnPEHpuzudKiG/c/4svvrQGD+76pM++XvQv3YYjD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACe/mo1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWRBfvQAAAADyvPW/AAAAALS3zD0AAAAAuZraPwAAAAALJli9AAAAAJXbAEAAAAAAflWGPQAAAACpT/i/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALnDqtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLNvxT0AAAAA1cbnvwAAAACELD09AAAAADCB9D8AAAAAGnzpPQAAAAB98fw/AAAAAIHUBT4AAAAANw/9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAELiMrcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBIywo+AAAAAKm3+r8AAAAAjxiovQAAAAAWfuw/AAAAAD9szL0AAAAAhFb0PwAAAAA1vA8+AAAAAOi0678AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLyZg0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFEgJPAAAAADgrey/AAAAANtHo70AAAAALMDfPwAAAACv1aK8AAAAACjM/z8AAAAABs4AvgAAAAA58/6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHwHPyLAHmmMAWyUTegDjAF0lEdApeKGcnVoYnV9lChoBkdAki7DJU5uImgHTegDaAhHQKXkzWsA/9p1fZQoaAZHQI8Mj2lEZzhoB03oA2gIR0Cl5VoZQ53ldX2UKGgGR0COUK+B6KLsaAdN6ANoCEdApes/AqNIb3V9lChoBkdAk0wb+PzWgGgHTegDaAhHQKXw/2f02+B1fZQoaAZHQJIQ00IkZ75oB03oA2gIR0Cl8n5MDfWMdX2UKGgGR0CFjHuFYdQwaAdN6ANoCEdApfLYogFHKHV9lChoBkdAlBjoInjQzGgHTegDaAhHQKX24x/NJOF1fZQoaAZHQJSqeIfr8ixoB03oA2gIR0Cl/LfUONHZdX2UKGgGR0CTLZsByS3caAdN6ANoCEdApf4wIdELIHV9lChoBkdAk0/iYG+sYGgHTegDaAhHQKX+i5f+jud1fZQoaAZHQJLpI7Rv3rVoB03oA2gIR0CmAp3hXKbKdX2UKGgGR0CSccnyup0faAdN6ANoCEdApgjbJ0W/J3V9lChoBkdAkzjinUDuB2gHTegDaAhHQKYKT+OwPiF1fZQoaAZHQJN9iP5pJwtoB03oA2gIR0CmCqcVxjridX2UKGgGR0CTBZFYuCf6aAdN6ANoCEdApg6ndEb5unV9lChoBkdAjezhD5TIemgHTegDaAhHQKYUUvh60IF1fZQoaAZHQJHNZgSeyzJoB03oA2gIR0CmFcAVfu1GdX2UKGgGR0CQxpjBl+VkaAdN6ANoCEdAphYRLwnYx3V9lChoBkdAkAcaj3225WgHTegDaAhHQKYaGfChvit1fZQoaAZHQJPnO4LCvX9oB03oA2gIR0CmH+HhsImgdX2UKGgGR0CS3yT7VJ+VaAdN6ANoCEdApiFeqR2bG3V9lChoBkdAktAn9rGipWgHTegDaAhHQKYhtUPQOWl1fZQoaAZHQJBi85QxesxoB03oA2gIR0CmJcvs7dSEdX2UKGgGR0CRoOEdNnGsaAdN6ANoCEdApivF8/lhgHV9lChoBkdAlIFaf4AS4GgHTegDaAhHQKYtUW2w3YN1fZQoaAZHQJK4isXBP9FoB03oA2gIR0CmLarvkRzzdX2UKGgGR0CSgf/cFhXsaAdN6ANoCEdApjHuuLaVU3V9lChoBkdAlCRQF1SwW2gHTegDaAhHQKY35KU3XI51fZQoaAZHQJN/8CU5dW1oB03oA2gIR0CmOVD7qIJrdX2UKGgGR0CUGxKISDh+aAdN6ANoCEdApjmhXOnl4nV9lChoBkdAlEDWvjfelGgHTegDaAhHQKY9oRHww0x1fZQoaAZHQJJtuFSKm9BoB03oA2gIR0CmQ6Kp1ie/dX2UKGgGR0CSVk6cRUWEaAdN6ANoCEdApkUgsmOU+3V9lChoBkdAkvAhAOavzWgHTegDaAhHQKZFcb6xgRd1fZQoaAZHQJJ3g+xGDthoB03oA2gIR0CmSYlzEJjUdX2UKGgGR0CSfbiNKh+OaAdN6ANoCEdApk930Zm7KHV9lChoBkdAkdM4nv2GqWgHTegDaAhHQKZRAhnJ1aJ1fZQoaAZHQJRdMLQXyiFoB03oA2gIR0CmUVknLJS0dX2UKGgGR0CTc+Ssr/bTaAdN6ANoCEdAplW0GX5WR3V9lChoBkdAkiTgwTM7l2gHTegDaAhHQKZbfuiN83N1fZQoaAZHQJK5C0qpcX5oB03oA2gIR0CmXP/tQbdadX2UKGgGR0CTYmPuG9HuaAdN6ANoCEdApl1QIa99MXV9lChoBkdAkIW06HTJAGgHTegDaAhHQKZhT3X7LuB1fZQoaAZHQJGEzLhaTwFoB03oA2gIR0CmZzkWRA8kdX2UKGgGR0CRZdAmzBykaAdN6ANoCEdApmjBKSPluHV9lChoBkdAkmUUEs8PnWgHTegDaAhHQKZpEmfoRqZ1fZQoaAZHQI59lHvttyhoB03oA2gIR0CmbQtmL9/CdX2UKGgGR0CQk9UY8+zMaAdN6ANoCEdApnLsXgtOEnV9lChoBkdAkeNeiBXjl2gHTegDaAhHQKZ0azQeFL51fZQoaAZHQJHlV92HLzRoB03oA2gIR0CmdMuIqLCOdX2UKGgGR0COhYQaJhvzaAdN6ANoCEdApnjIHgP3BnV9lChoBkdAjdHJMQEpzGgHTegDaAhHQKZ+xCyhSLt1fZQoaAZHQJJdgoc7yQRoB03oA2gIR0CmgDp8v24/dX2UKGgGR0CRemsr/bTMaAdN6ANoCEdApoCRiNKh+XV9lChoBkdAkoUSCrcTJ2gHTegDaAhHQKaEmGZeAut1fZQoaAZHQJBqBY+0PYpoB03oA2gIR0Cmim3b212JdX2UKGgGR0CRGv0OVgQZaAdN6ANoCEdApov3WSU1RHV9lChoBkdAkA+FZ5iVjmgHTegDaAhHQKaMT+Q2dd51fZQoaAZHQJBPo6Kcd5poB03oA2gIR0CmkHzkp7TldX2UKGgGR0CQk+ttQ9A5aAdN6ANoCEdAppYvx+az/3V9lChoBkdAjRyO2iL2pWgHTegDaAhHQKaXoxyGSIR1fZQoaAZHQJJfkfeUILRoB03oA2gIR0Cml/ZG8VYZdX2UKGgGR0CSWUO1fE4vaAdN6ANoCEdAppvw5FPSD3V9lChoBkdAkkid+TeO42gHTegDaAhHQKahysCkoF51fZQoaAZHQJFio95hScdoB03oA2gIR0Cmo0ARsdkrdX2UKGgGR0CQH17qY7aJaAdN6ANoCEdApqOUjPfKp3V9lChoBkdAkW9pQUHpr2gHTegDaAhHQKanm9zOopB1fZQoaAZHQJCGBoakyk9oB03oA2gIR0CmrdTd+G47dX2UKGgGR0CRKxVOsT37aAdN6ANoCEdApq9n4/NZ/3V9lChoBkdAkSXAk9lmOGgHTegDaAhHQKavxYYixFB1fZQoaAZHQJF1NvIfbK1oB03oA2gIR0CmtHkpRXOodX2UKGgGR0CRz4wfyPMjaAdN6ANoCEdAprqtO/L1VnV9lChoBkdAk430L+glGGgHTegDaAhHQKa8UTsY2sJ1fZQoaAZHQJJVd4SpR41oB03oA2gIR0CmvK6zE74jdX2UKGgGR0CQyISyt3fRaAdN6ANoCEdApsD3J1aGH3V9lChoBkdAkKssvmHP/2gHTegDaAhHQKbHB9mYjSp1fZQoaAZHQJIWYatLcsVoB03oA2gIR0CmyKTAFgUldX2UKGgGR0CRQozMA3kxaAdN6ANoCEdApsj5KL8763V9lChoBkdAkjMnZwn6VWgHTegDaAhHQKbNLPC2tuF1fZQoaAZHQJIoy6H0se5oB03oA2gIR0Cm0yBG6PKddX2UKGgGR0CSkSujASFoaAdN6ANoCEdAptSvEIgNgHV9lChoBkdAkhVqMrEtNGgHTegDaAhHQKbVBqB3A211fZQoaAZHQJJpO/WUbDNoB03oA2gIR0Cm2VPB7/n4dX2UKGgGR0CSukPxx1gZaAdN6ANoCEdApt9E1yeZonV9lChoBkdAk7KyjgydnWgHTegDaAhHQKbgxuy/sVt1fZQoaAZHQJWNP5mAbyZoB03oA2gIR0Cm4SOIqLCOdX2UKGgGR0CVYZ8CgbqAaAdN6ANoCEdApuVQwK0D2nV9lChoBkdAksCh1DBuXWgHTegDaAhHQKbrZgRbr1N1fZQoaAZHQJNaEujASFpoB03oA2gIR0Cm7PIHC4z8dX2UKGgGR0CSIdBun/DMaAdN6ANoCEdApu1NyLhrFnV9lChoBkdAk9i0h7mdRWgHTegDaAhHQKbxi814xDd1fZQoaAZHQJSUVeeFtbdoB03oA2gIR0Cm97R33YcvdX2UKGgGR0CTnXckMTewaAdN6ANoCEdApvk4pDu0C3V9lChoBkdAcdbLE1l5GGgHTegDaAhHQKb5k4qgAZN1fZQoaAZHwEADVJ+UhV5oB0tvaAhHQKb6iZPVNHp1fZQoaAZHQJOnJdszl91oB03oA2gIR0Cm/azmnwXqdX2UKGgGR0CTCQtHhCMQaAdN6ANoCEdApwOba9K28nV9lChoBkdAj/ExQrMC92gHTegDaAhHQKcFcCtihFp1fZQoaAZHQIzMCRfWtltoB03oA2gIR0CnBmqjrRjSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8264458c8b9d04374f1cd0122d303cd490e2f803c7d085899b23df71f12612e2
3
+ size 1039835
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1165.8245339566813, "std_reward": 261.4926369385656, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T03:38:14.526719"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a0456f7202c4147013edcf10f5502db910ee988ee468c8fab854e3e78092c07
3
+ size 2521