Binarybardakshat commited on
Commit
50bc80b
·
verified ·
1 Parent(s): 3d08de3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -29
README.md CHANGED
@@ -1,42 +1,56 @@
1
- ---
2
- license: openrail
3
- datasets:
4
- - Binarybardakshat/SVLM-ACL-DATASET
5
- language:
6
- - en
7
- library_name: transformers
8
- ---
9
- # SVLM: A Question-Answering Model for ACL Research Papers
10
-
11
- This model, `SVLM`, is designed to answer questions based on research papers from the ACL dataset. It leverages the BART architecture to generate precise answers from scientific abstracts.
12
 
13
  ## Model Details
14
 
15
- - **Model Architecture:** BART (Bidirectional and Auto-Regressive Transformers)
16
- - **Framework:** TensorFlow
17
- - **Dataset:** [Binarybardakshat/SVLM-ACL-DATASET](https://huggingface.co/datasets/Binarybardakshat/SVLM-ACL-DATASET)
18
- - **Author:** @binarybardakshat (Akshat Shukla)
19
- - **Purpose:** The model is trained to provide answers to questions from the ACL research paper dataset.
 
 
20
 
21
- ## Usage
 
22
 
23
- To use this model with the Hugging Face Interface API:
24
 
25
  ```python
26
- from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
27
 
28
  # Load the model and tokenizer
29
- tokenizer = AutoTokenizer.from_pretrained("binarybardakshat/SVLM")
30
- model = TFAutoModelForSeq2SeqLM.from_pretrained("binarybardakshat/SVLM")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- # Example input
33
- input_text = "What is the main contribution of the paper titled 'Your Paper Title'?"
34
 
35
- # Tokenize input
36
- inputs = tokenizer(input_text, return_tensors="tf", padding=True, truncation=True)
37
 
38
- # Generate answer
39
- outputs = model.generate(inputs.input_ids, max_length=50, num_beams=5, early_stopping=True)
40
- answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
41
 
42
- print("Answer:", answer)
 
 
 
1
+ # SVLM (Scientific Virtual Language Model)
2
+
3
+ This model is designed to answer questions based on research papers from the ACL Anthology. The model uses a Seq2Seq approach and was fine-tuned on the `SVLM-ACL-DATASET` dataset, focusing on generating high-quality responses related to research topics.
 
 
 
 
 
 
 
 
4
 
5
  ## Model Details
6
 
7
+ - **Model Architecture:** BART (Base)
8
+ - **Libraries Used:**
9
+ - `transformers`
10
+ - `tensorflow`
11
+ - `datasets`
12
+ - `safetensors`
13
+ - `pandas`
14
 
15
+ - **Training Framework:** TensorFlow
16
+ - **Data Source:** [SVLM-ACL-DATASET](https://huggingface.co/datasets/Binarybardakshat/SVLM-ACL-DATASET)
17
 
18
+ ## Usage
19
 
20
  ```python
21
+ from transformers import pipeline
22
 
23
  # Load the model and tokenizer
24
+ qa_pipeline = pipeline("question-answering", model="Binarybardakshat/svlm", tokenizer="Binarybardakshat/svlm")
25
+
26
+ # Ask a question
27
+ result = qa_pipeline(question="What is the purpose of this research?", context="Context of the research paper...")
28
+ print(result)
29
+ # SVLM (Scientific Virtual Language Model)
30
+
31
+ This model is designed to answer questions based on research papers from the ACL Anthology. The model uses a Seq2Seq approach and was fine-tuned on the `SVLM-ACL-DATASET` dataset, focusing on generating high-quality responses related to research topics.
32
+
33
+ ## Model Details
34
+
35
+ - **Model Architecture:** BART (Base)
36
+ - **Libraries Used:**
37
+ - `transformers`
38
+ - `tensorflow`
39
+ - `datasets`
40
+ - `safetensors`
41
+ - `pandas`
42
+
43
+ - **Training Framework:** TensorFlow
44
+ - **Data Source:** [SVLM-ACL-DATASET](https://huggingface.co/datasets/Binarybardakshat/SVLM-ACL-DATASET)
45
 
46
+ ## Usage
 
47
 
48
+ ```python
49
+ from transformers import pipeline
50
 
51
+ # Load the model and tokenizer
52
+ qa_pipeline = pipeline("question-answering", model="Binarybardakshat/svlm", tokenizer="Binarybardakshat/svlm")
 
53
 
54
+ # Ask a question
55
+ result = qa_pipeline(question="What is the purpose of this research?", context="Context of the research paper...")
56
+ print(result)