--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: test-trainer results: - task: name: Image Classification type: image-classification dataset: name: Chess type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9107142857142857 - name: F1 type: f1 value: 0.9121670865142396 - name: Precision type: precision value: 0.9171626984126985 - name: Recall type: recall value: 0.9107142857142857 --- # test-trainer This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the Chess dataset. It achieves the following results on the evaluation set: - Loss: 0.7291 - Accuracy: 0.9107 - F1: 0.9122 - Precision: 0.9172 - Recall: 0.9107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 50 | 1.6720 | 0.4821 | 0.4134 | 0.3870 | 0.4821 | | No log | 2.0 | 100 | 1.4652 | 0.6429 | 0.6126 | 0.7414 | 0.6429 | | No log | 3.0 | 150 | 1.1742 | 0.7321 | 0.7210 | 0.7792 | 0.7321 | | No log | 4.0 | 200 | 0.9813 | 0.8393 | 0.8433 | 0.8589 | 0.8393 | | No log | 5.0 | 250 | 0.8312 | 0.8214 | 0.8164 | 0.8516 | 0.8214 | | No log | 6.0 | 300 | 0.7291 | 0.9107 | 0.9122 | 0.9172 | 0.9107 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.2.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3