Make it better
Browse files- .DS_Store +0 -0
- __pycache__/plapt.cpython-312.pyc +0 -0
- index.py +65 -0
- models/.DS_Store +0 -0
- models/affinity_predictor0734-seed2101.onnx +3 -0
- plapt.py +171 -0
- plapt_cli.py +53 -0
- requirements.txt +6 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
__pycache__/plapt.cpython-312.pyc
ADDED
Binary file (9.54 kB). View file
|
|
index.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import json
|
3 |
+
import onnxruntime
|
4 |
+
from transformers import BertTokenizer, RobertaTokenizer
|
5 |
+
import torch
|
6 |
+
|
7 |
+
def init():
|
8 |
+
global session, prot_tokenizer, mol_tokenizer, input_name
|
9 |
+
session = onnxruntime.InferenceSession("models/affinity_predictor0734-seed2101.onnx")
|
10 |
+
input_name = session.get_inputs()[0].name
|
11 |
+
prot_tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
|
12 |
+
mol_tokenizer = RobertaTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
13 |
+
|
14 |
+
def run(raw_data):
|
15 |
+
try:
|
16 |
+
data = json.loads(raw_data)
|
17 |
+
prot_seq = data['protein']
|
18 |
+
mol_smiles = data['smiles']
|
19 |
+
|
20 |
+
# Tokenize and encode protein
|
21 |
+
prot_tokens = prot_tokenizer(preprocess_sequence(prot_seq),
|
22 |
+
padding=True,
|
23 |
+
max_length=3200,
|
24 |
+
truncation=True,
|
25 |
+
return_tensors='pt')
|
26 |
+
with torch.no_grad():
|
27 |
+
prot_representations = torch.tensor(prot_tokens['input_ids']).unsqueeze(0)
|
28 |
+
prot_representations = prot_representations.squeeze(0)
|
29 |
+
|
30 |
+
# Tokenize and encode molecule
|
31 |
+
mol_tokens = mol_tokenizer(mol_smiles,
|
32 |
+
padding=True,
|
33 |
+
max_length=278,
|
34 |
+
truncation=True,
|
35 |
+
return_tensors='pt')
|
36 |
+
with torch.no_grad():
|
37 |
+
mol_representations = torch.tensor(mol_tokens['input_ids']).unsqueeze(0)
|
38 |
+
mol_representations = mol_representations.squeeze(0)
|
39 |
+
|
40 |
+
# Combine representations
|
41 |
+
features = torch.cat((prot_representations, mol_representations), dim=0)
|
42 |
+
|
43 |
+
# Run inference
|
44 |
+
affinity_normalized = session.run(None, {input_name: [features.numpy()], 'TrainingMode': np.array(False)})[0][0][0]
|
45 |
+
|
46 |
+
# Convert to affinity
|
47 |
+
affinity = convert_to_affinity(affinity_normalized)
|
48 |
+
|
49 |
+
return (affinity)
|
50 |
+
except Exception as e:
|
51 |
+
return json.dumps({"error": str(e)})
|
52 |
+
|
53 |
+
def preprocess_sequence(seq):
|
54 |
+
import re
|
55 |
+
return " ".join(re.sub(r"[UZOB]", "X", seq))
|
56 |
+
|
57 |
+
def convert_to_affinity(normalized):
|
58 |
+
mean = 6.51286529169358
|
59 |
+
scale = 1.5614094578916633
|
60 |
+
return {
|
61 |
+
"neg_log10_affinity_M": (normalized * scale) + mean,
|
62 |
+
"affinity_uM": (10**6) * (10**(-((normalized * scale) + mean)))
|
63 |
+
}
|
64 |
+
|
65 |
+
print(run({"protein": "MILK", "smiles": "CCO"}))
|
models/.DS_Store
ADDED
File without changes
|
models/affinity_predictor0734-seed2101.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbb242b307274215e542bae5cd524f81d06e6f1102b4cc0cf31042e2a601509c
|
3 |
+
size 5924195
|
plapt.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import BertTokenizer, BertModel, RobertaTokenizer, RobertaModel
|
3 |
+
import re
|
4 |
+
import onnxruntime
|
5 |
+
import numpy as np
|
6 |
+
torch.set_num_threads(1)
|
7 |
+
def flatten_list(nested_list):
|
8 |
+
flat_list = []
|
9 |
+
for element in nested_list:
|
10 |
+
if isinstance(element, list):
|
11 |
+
flat_list.extend(flatten_list(element))
|
12 |
+
else:
|
13 |
+
flat_list.append(element)
|
14 |
+
|
15 |
+
return flat_list
|
16 |
+
|
17 |
+
class PredictionModule:
|
18 |
+
def __init__(self, model_path="models/affinity_predictor0734-seed2101.onnx"):
|
19 |
+
self.session = onnxruntime.InferenceSession(model_path)
|
20 |
+
self.input_name = self.session.get_inputs()[0].name
|
21 |
+
|
22 |
+
# Normalization scaling parameters
|
23 |
+
self.mean = 6.51286529169358
|
24 |
+
self.scale = 1.5614094578916633
|
25 |
+
|
26 |
+
def convert_to_affinity(self, normalized):
|
27 |
+
return {
|
28 |
+
"neg_log10_affinity_M": (normalized * self.scale) + self.mean,
|
29 |
+
"affinity_uM" : (10**6) * (10**(-((normalized * self.scale) + self.mean)))
|
30 |
+
}
|
31 |
+
|
32 |
+
def predict(self, batch_data):
|
33 |
+
"""Run predictions on a batch of data."""
|
34 |
+
# Convert each tensor to a numpy array and store in a list
|
35 |
+
batch_data = np.array([t.numpy() for t in batch_data])
|
36 |
+
|
37 |
+
# Process each feature in the batch individually and store results
|
38 |
+
affinities = []
|
39 |
+
for feature in batch_data:
|
40 |
+
# Run the model on the single feature
|
41 |
+
affinity_normalized = self.session.run(None, {self.input_name: [feature], 'TrainingMode': np.array(False)})[0][0][0]
|
42 |
+
# Append the result
|
43 |
+
affinities.append(self.convert_to_affinity(affinity_normalized))
|
44 |
+
|
45 |
+
return affinities
|
46 |
+
|
47 |
+
class Plapt:
|
48 |
+
def __init__(self, prediction_module_path = "models/affinity_predictor0734-seed2101.onnx", caching=True, device='cuda'):
|
49 |
+
# Set device for computation
|
50 |
+
self.device = torch.device(device if torch.cuda.is_available() else 'cpu')
|
51 |
+
|
52 |
+
# Load protein tokenizer and encoder
|
53 |
+
self.prot_tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
|
54 |
+
self.prot_encoder = BertModel.from_pretrained("Rostlab/prot_bert").to(self.device)
|
55 |
+
|
56 |
+
# Load molecule tokenizer and encoder
|
57 |
+
self.mol_tokenizer = RobertaTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
58 |
+
self.mol_encoder = RobertaModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1").to(self.device)
|
59 |
+
|
60 |
+
self.caching = caching
|
61 |
+
self.cache = {}
|
62 |
+
|
63 |
+
# Load the prediction module ONNX model
|
64 |
+
self.prediction_module = PredictionModule(prediction_module_path)
|
65 |
+
|
66 |
+
def set_prediction_module(self, prediction_module_path):
|
67 |
+
self.prediction_module = PredictionModule(prediction_module_path)
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def preprocess_sequence(seq):
|
71 |
+
# Preprocess protein sequence
|
72 |
+
return " ".join(re.sub(r"[UZOB]", "X", seq))
|
73 |
+
|
74 |
+
def tokenize(self, mol_smiles):
|
75 |
+
# Tokenize and encode molecules
|
76 |
+
mol_tokens = self.mol_tokenizer(mol_smiles,
|
77 |
+
padding=True,
|
78 |
+
max_length=278,
|
79 |
+
truncation=True,
|
80 |
+
return_tensors='pt')
|
81 |
+
return mol_tokens
|
82 |
+
|
83 |
+
def tokenize_prot(self, prot_seq):
|
84 |
+
# Tokenize and encode protein sequences
|
85 |
+
prot_tokens = self.prot_tokenizer(self.preprocess_sequence(prot_seq),
|
86 |
+
padding=True,
|
87 |
+
max_length=3200,
|
88 |
+
truncation=True,
|
89 |
+
return_tensors='pt')
|
90 |
+
|
91 |
+
return prot_tokens
|
92 |
+
|
93 |
+
# Define the batch functions
|
94 |
+
@staticmethod
|
95 |
+
def make_batches(iterable, n=1):
|
96 |
+
length = len(iterable)
|
97 |
+
for ndx in range(0, length, n):
|
98 |
+
yield iterable[ndx:min(ndx + n, length)]
|
99 |
+
|
100 |
+
def predict_affinity(self, prot_seq, mol_smiles, batch_size=2):
|
101 |
+
input_strs = mol_smiles
|
102 |
+
|
103 |
+
prot_tokens = self.tokenize_prot(prot_seq)
|
104 |
+
with torch.no_grad():
|
105 |
+
prot_representations = self.prot_encoder(**prot_tokens.to(self.device)).pooler_output.cpu()
|
106 |
+
prot_representations = prot_representations.squeeze(0)
|
107 |
+
# repeat for zip(prot_representations, mol_representations)
|
108 |
+
prot_representations = [prot_representations for i in range(batch_size)]
|
109 |
+
|
110 |
+
affinities = []
|
111 |
+
for batch in self.make_batches(input_strs, batch_size):
|
112 |
+
batch_key = str(batch) # Convert batch to a string to use as a dictionary key
|
113 |
+
|
114 |
+
if batch_key in self.cache and self.caching:
|
115 |
+
# Use cached features if available
|
116 |
+
features = self.cache[batch_key]
|
117 |
+
else:
|
118 |
+
# Tokenize and encode the batch, then cache the results
|
119 |
+
mol_tokens = self.tokenize(batch)
|
120 |
+
with torch.no_grad():
|
121 |
+
mol_representations = self.mol_encoder(**mol_tokens.to(self.device)).pooler_output.cpu()
|
122 |
+
mol_representations = [mol_representations[i, :] for i in range(mol_representations.shape[0])]
|
123 |
+
|
124 |
+
features = [torch.cat((prot, mol), dim=0) for prot, mol in
|
125 |
+
zip(prot_representations, mol_representations)]
|
126 |
+
|
127 |
+
if self.caching:
|
128 |
+
self.cache[batch_key] = features
|
129 |
+
|
130 |
+
affinities.extend(self.prediction_module.predict(features))
|
131 |
+
|
132 |
+
return affinities
|
133 |
+
|
134 |
+
def score_candidates(self, target_protein, mol_smiles, batch_size=2):
|
135 |
+
target_tokens = self.prot_tokenizer([self.preprocess_sequence(target_protein)],
|
136 |
+
padding=True,
|
137 |
+
max_length=3200,
|
138 |
+
truncation=True,
|
139 |
+
return_tensors='pt')
|
140 |
+
|
141 |
+
with torch.no_grad():
|
142 |
+
target_representation = self.prot_encoder(**target_tokens.to(self.device)).pooler_output.cpu()
|
143 |
+
|
144 |
+
print(target_representation)
|
145 |
+
|
146 |
+
affinities = []
|
147 |
+
for mol in mol_smiles:
|
148 |
+
mol_tokens = self.mol_tokenizer(mol,
|
149 |
+
padding=True,
|
150 |
+
max_length=278,
|
151 |
+
truncation=True,
|
152 |
+
return_tensors='pt')
|
153 |
+
|
154 |
+
with torch.no_grad():
|
155 |
+
mol_representations = self.mol_encoder(**mol_tokens.to(self.device)).pooler_output.cpu()
|
156 |
+
|
157 |
+
print(mol_representations)
|
158 |
+
|
159 |
+
features = torch.cat((target_representation[0], mol_representations[0]), dim=0)
|
160 |
+
|
161 |
+
print(features)
|
162 |
+
|
163 |
+
affinities.extend(self.prediction_module.predict([features]))
|
164 |
+
|
165 |
+
return affinities
|
166 |
+
|
167 |
+
def get_cached_features(self):
|
168 |
+
return [tensor.tolist() for tensor in flatten_list(list(self.cache.values()))]
|
169 |
+
|
170 |
+
def clear_cache(self):
|
171 |
+
self.cache = {}
|
plapt_cli.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import json
|
7 |
+
import csv
|
8 |
+
import os
|
9 |
+
from plapt import Plapt
|
10 |
+
warnings.filterwarnings("ignore")
|
11 |
+
def write_json(results, filename):
|
12 |
+
with open(filename, 'w') as json_file:
|
13 |
+
json.dump(results, json_file)
|
14 |
+
|
15 |
+
def write_csv(results, filename):
|
16 |
+
with open(filename, 'w', newline='') as csv_file:
|
17 |
+
writer = csv.writer(csv_file)
|
18 |
+
for result in results:
|
19 |
+
writer.writerow([result])
|
20 |
+
|
21 |
+
def determine_format_and_update_filename(output_arg, format_arg):
|
22 |
+
if output_arg:
|
23 |
+
_, ext = os.path.splitext(output_arg)
|
24 |
+
if ext not in [".csv", ".json"]:
|
25 |
+
output_arg += f".{format_arg or 'json'}"
|
26 |
+
return output_arg, (format_arg or "json" if not ext else ext[1:])
|
27 |
+
return None, "json"
|
28 |
+
|
29 |
+
def main():
|
30 |
+
parser = argparse.ArgumentParser(description="Predict affinity using Plapt.")
|
31 |
+
parser.add_argument("-t", "--target", nargs="+", required=True, help="The target protein sequence")
|
32 |
+
parser.add_argument("-m", "--smiles", nargs="+", required=True, help="List of SMILES strings")
|
33 |
+
parser.add_argument("-o", "--output", help="Optional output file path")
|
34 |
+
parser.add_argument("-f", "--format", choices=["json", "csv"], help="Optional output file format; required if output is specified without an extension")
|
35 |
+
|
36 |
+
args = parser.parse_args()
|
37 |
+
|
38 |
+
plapt = Plapt()
|
39 |
+
results = plapt.predict_affinity(args.target[0], args.smiles)
|
40 |
+
|
41 |
+
args.output, output_format = determine_format_and_update_filename(args.output, args.format)
|
42 |
+
|
43 |
+
if args.output:
|
44 |
+
if output_format == "json":
|
45 |
+
write_json(results, args.output)
|
46 |
+
elif output_format == "csv":
|
47 |
+
write_csv(results, args.output)
|
48 |
+
print(f"Output written to {args.output}")
|
49 |
+
else:
|
50 |
+
print(results)
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
azureml-core
|
2 |
+
azureml-defaults
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
onnxruntime
|
6 |
+
numpy
|