BitanBiswas commited on
Commit
a5ebbb5
·
1 Parent(s): 3a7f624

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-base-timit-demo-google-colab
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-base-timit-demo-google-colab
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.4770
18
+ - Wer: 0.3360
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 30
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
50
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
+ | 3.6401 | 1.0 | 500 | 2.4138 | 1.0 |
52
+ | 0.9717 | 2.01 | 1000 | 0.6175 | 0.5531 |
53
+ | 0.4393 | 3.01 | 1500 | 0.4309 | 0.4414 |
54
+ | 0.2976 | 4.02 | 2000 | 0.4167 | 0.4162 |
55
+ | 0.2345 | 5.02 | 2500 | 0.4273 | 0.3927 |
56
+ | 0.1919 | 6.02 | 3000 | 0.3983 | 0.3886 |
57
+ | 0.1565 | 7.03 | 3500 | 0.5581 | 0.3928 |
58
+ | 0.1439 | 8.03 | 4000 | 0.4509 | 0.3821 |
59
+ | 0.1266 | 9.04 | 4500 | 0.4733 | 0.3774 |
60
+ | 0.1091 | 10.04 | 5000 | 0.4755 | 0.3808 |
61
+ | 0.1001 | 11.04 | 5500 | 0.4435 | 0.3689 |
62
+ | 0.0911 | 12.05 | 6000 | 0.4962 | 0.3897 |
63
+ | 0.0813 | 13.05 | 6500 | 0.5031 | 0.3622 |
64
+ | 0.0729 | 14.06 | 7000 | 0.4853 | 0.3597 |
65
+ | 0.0651 | 15.06 | 7500 | 0.5180 | 0.3577 |
66
+ | 0.0608 | 16.06 | 8000 | 0.5251 | 0.3630 |
67
+ | 0.0592 | 17.07 | 8500 | 0.4915 | 0.3591 |
68
+ | 0.0577 | 18.07 | 9000 | 0.4724 | 0.3656 |
69
+ | 0.0463 | 19.08 | 9500 | 0.4536 | 0.3546 |
70
+ | 0.0475 | 20.08 | 10000 | 0.5107 | 0.3546 |
71
+ | 0.0464 | 21.08 | 10500 | 0.4829 | 0.3464 |
72
+ | 0.0369 | 22.09 | 11000 | 0.4844 | 0.3448 |
73
+ | 0.0327 | 23.09 | 11500 | 0.4865 | 0.3437 |
74
+ | 0.0337 | 24.1 | 12000 | 0.4825 | 0.3488 |
75
+ | 0.0271 | 25.1 | 12500 | 0.4824 | 0.3445 |
76
+ | 0.0236 | 26.1 | 13000 | 0.4747 | 0.3397 |
77
+ | 0.0243 | 27.11 | 13500 | 0.4840 | 0.3397 |
78
+ | 0.0226 | 28.11 | 14000 | 0.4716 | 0.3354 |
79
+ | 0.0235 | 29.12 | 14500 | 0.4770 | 0.3360 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.17.0
85
+ - Pytorch 1.11.0+cu113
86
+ - Datasets 1.18.3
87
+ - Tokenizers 0.12.1