|
import base64 |
|
import json |
|
import os |
|
from io import StringIO |
|
from typing import Dict, Any |
|
|
|
import torch |
|
from transformers import pipeline |
|
|
|
|
|
class EndpointHandler: |
|
|
|
def __init__(self, asr_model_path: str = "./whisper-large-v2"): |
|
device = 0 if torch.cuda.is_available() else -1 |
|
device = -1 |
|
print("Using device:", device) |
|
|
|
self.asr_pipeline = pipeline( |
|
"automatic-speech-recognition", |
|
model = asr_model_path, |
|
device = device |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> str: |
|
|
|
if "audio_data" not in data.keys(): |
|
raise Exception("Request must contain a top-level key named 'audio_data'") |
|
|
|
|
|
audio_data = data["audio_data"] |
|
options = data["options"] |
|
|
|
|
|
if isinstance(audio_data, str): |
|
audio_data = base64.b64decode(audio_data) |
|
|
|
|
|
transcription = self.asr_pipeline( |
|
audio_data, |
|
return_timestamps = True, |
|
chunk_length_s = 30, |
|
batch_size = 8, |
|
max_new_tokens = 10000, |
|
generate_kwargs = options |
|
) |
|
|
|
|
|
result = StringIO() |
|
json.dump(transcription, result) |
|
|
|
return result.getvalue() |
|
|