Upload handler.py
Browse files- handler.py +89 -0
handler.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from io import StringIO
|
5 |
+
from typing import Dict, Any
|
6 |
+
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
|
10 |
+
class EndpointHandler:
|
11 |
+
|
12 |
+
def __init__(self, asr_model_path: str = "./whisper-large-v2"):
|
13 |
+
# Create an ASR pipeline using the model located in the specified directory
|
14 |
+
self.asr_pipeline = pipeline(
|
15 |
+
"automatic-speech-recognition",
|
16 |
+
model = asr_model_path,
|
17 |
+
)
|
18 |
+
|
19 |
+
def __call__(self, data: Dict[str, Any]) -> str:
|
20 |
+
|
21 |
+
json_data = json.loads(data)
|
22 |
+
if "audio_data" not in json_data.keys():
|
23 |
+
raise Exception("Request must contain a top-level key named 'audio_data'")
|
24 |
+
|
25 |
+
# Get the audio data from the input
|
26 |
+
audio_data = json_data["audio_data"]
|
27 |
+
language = json_data["language"]
|
28 |
+
|
29 |
+
# Decode the binary audio data if it's provided as a base64 string
|
30 |
+
if isinstance(audio_data, str):
|
31 |
+
audio_data = base64.b64decode(audio_data)
|
32 |
+
|
33 |
+
# Process the audio data with the ASR pipeline
|
34 |
+
transcription = self.asr_pipeline(
|
35 |
+
audio_data,
|
36 |
+
return_timestamps=False,
|
37 |
+
chunk_length_s=30,
|
38 |
+
batch_size=8,
|
39 |
+
max_length=10000,
|
40 |
+
max_new_tokens=10000,
|
41 |
+
generate_kwargs={"task": "transcribe", "language": "<|language|>"}
|
42 |
+
)
|
43 |
+
|
44 |
+
# Convert the transcription to JSON
|
45 |
+
result = StringIO()
|
46 |
+
json.dump(transcription, result)
|
47 |
+
|
48 |
+
return result.getvalue()
|
49 |
+
|
50 |
+
def init():
|
51 |
+
global asr_pipeline
|
52 |
+
# Set the path to the directory where the model is stored
|
53 |
+
model_path = os.getenv("AZUREML_MODEL_DIR", "./whisper-large-v2")
|
54 |
+
|
55 |
+
# Create an ASR pipeline using the model located in the specified directory
|
56 |
+
asr_pipeline = pipeline(
|
57 |
+
"automatic-speech-recognition",
|
58 |
+
model = model_path,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def run(raw_data):
|
63 |
+
json_data = json.loads(raw_data)
|
64 |
+
if "audio_data" not in json_data.keys():
|
65 |
+
raise Exception("Request must contain a top level key named 'audio_data'")
|
66 |
+
|
67 |
+
# Get the audio data from the input
|
68 |
+
audio_data = json_data["audio_data"]
|
69 |
+
|
70 |
+
# Decode the binary audio data if it's provided as a base64 string
|
71 |
+
if isinstance(audio_data, str):
|
72 |
+
import base64
|
73 |
+
audio_data = base64.b64decode(audio_data)
|
74 |
+
|
75 |
+
# Process the audio data with the ASR pipeline
|
76 |
+
transcription = asr_pipeline(
|
77 |
+
audio_data,
|
78 |
+
return_timestamps = False,
|
79 |
+
chunk_length_s = 30,
|
80 |
+
batch_size = 8,
|
81 |
+
max_new_tokens = 1000,
|
82 |
+
generate_kwargs = {"task": "transcribe", "language": "<|de|>"}
|
83 |
+
)
|
84 |
+
|
85 |
+
# Convert the transcription to JSON
|
86 |
+
result = StringIO()
|
87 |
+
json.dump(transcription, result)
|
88 |
+
|
89 |
+
return result.getvalue()
|