BleachNick
commited on
Commit
·
e69bb69
1
Parent(s):
db9ef4d
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +287 -0
- latest +1 -0
- pytorch_model.bin +3 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- trainer_state.json +874 -0
- training_args.bin +3 -0
- zero_to_fp32.py +584 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": "fa9c7486149855fffd7f495aed428f2b025f4fd5",
|
3 |
+
"_name_or_path": "Salesforce/instructblip-flan-t5-xl",
|
4 |
+
"architectures": [
|
5 |
+
"InstructBlipForConditionalGeneration"
|
6 |
+
],
|
7 |
+
"initializer_factor": 1.0,
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"is_encoder_decoder": true,
|
10 |
+
"model_type": "instructblip",
|
11 |
+
"num_query_tokens": 32,
|
12 |
+
"qformer_config": {
|
13 |
+
"_name_or_path": "",
|
14 |
+
"add_cross_attention": false,
|
15 |
+
"architectures": null,
|
16 |
+
"attention_probs_dropout_prob": 0.1,
|
17 |
+
"bad_words_ids": null,
|
18 |
+
"begin_suppress_tokens": null,
|
19 |
+
"bos_token_id": null,
|
20 |
+
"chunk_size_feed_forward": 0,
|
21 |
+
"classifier_dropout": null,
|
22 |
+
"cross_attention_frequency": 2,
|
23 |
+
"cross_attention_hidden_size": null,
|
24 |
+
"decoder_start_token_id": null,
|
25 |
+
"diversity_penalty": 0.0,
|
26 |
+
"do_sample": false,
|
27 |
+
"early_stopping": false,
|
28 |
+
"encoder_hidden_size": 1408,
|
29 |
+
"encoder_no_repeat_ngram_size": 0,
|
30 |
+
"eos_token_id": null,
|
31 |
+
"exponential_decay_length_penalty": null,
|
32 |
+
"finetuning_task": null,
|
33 |
+
"forced_bos_token_id": null,
|
34 |
+
"forced_eos_token_id": null,
|
35 |
+
"hidden_act": "gelu",
|
36 |
+
"hidden_dropout_prob": 0.1,
|
37 |
+
"hidden_size": 768,
|
38 |
+
"id2label": {
|
39 |
+
"0": "LABEL_0",
|
40 |
+
"1": "LABEL_1"
|
41 |
+
},
|
42 |
+
"initializer_range": 0.02,
|
43 |
+
"intermediate_size": 3072,
|
44 |
+
"is_decoder": false,
|
45 |
+
"is_encoder_decoder": false,
|
46 |
+
"label2id": {
|
47 |
+
"LABEL_0": 0,
|
48 |
+
"LABEL_1": 1
|
49 |
+
},
|
50 |
+
"layer_norm_eps": 1e-12,
|
51 |
+
"length_penalty": 1.0,
|
52 |
+
"max_length": 20,
|
53 |
+
"max_position_embeddings": 512,
|
54 |
+
"min_length": 0,
|
55 |
+
"model_type": "instructblip_qformer",
|
56 |
+
"no_repeat_ngram_size": 0,
|
57 |
+
"num_attention_heads": 12,
|
58 |
+
"num_beam_groups": 1,
|
59 |
+
"num_beams": 1,
|
60 |
+
"num_hidden_layers": 12,
|
61 |
+
"num_return_sequences": 1,
|
62 |
+
"output_attentions": false,
|
63 |
+
"output_hidden_states": false,
|
64 |
+
"output_scores": false,
|
65 |
+
"pad_token_id": 0,
|
66 |
+
"position_embedding_type": "absolute",
|
67 |
+
"prefix": null,
|
68 |
+
"problem_type": null,
|
69 |
+
"pruned_heads": {},
|
70 |
+
"remove_invalid_values": false,
|
71 |
+
"repetition_penalty": 1.0,
|
72 |
+
"return_dict": true,
|
73 |
+
"return_dict_in_generate": false,
|
74 |
+
"sep_token_id": null,
|
75 |
+
"suppress_tokens": null,
|
76 |
+
"task_specific_params": null,
|
77 |
+
"temperature": 1.0,
|
78 |
+
"tf_legacy_loss": false,
|
79 |
+
"tie_encoder_decoder": false,
|
80 |
+
"tie_word_embeddings": true,
|
81 |
+
"tokenizer_class": null,
|
82 |
+
"top_k": 50,
|
83 |
+
"top_p": 1.0,
|
84 |
+
"torch_dtype": null,
|
85 |
+
"torchscript": false,
|
86 |
+
"transformers_version": "4.29.2",
|
87 |
+
"typical_p": 1.0,
|
88 |
+
"use_bfloat16": false,
|
89 |
+
"vocab_size": 30623
|
90 |
+
},
|
91 |
+
"text_config": {
|
92 |
+
"_from_model_config": false,
|
93 |
+
"_name_or_path": "",
|
94 |
+
"add_cross_attention": false,
|
95 |
+
"architectures": [
|
96 |
+
"T5ForConditionalGeneration"
|
97 |
+
],
|
98 |
+
"bad_words_ids": null,
|
99 |
+
"begin_suppress_tokens": null,
|
100 |
+
"bos_token_id": 1,
|
101 |
+
"chunk_size_feed_forward": 0,
|
102 |
+
"cross_attention_hidden_size": null,
|
103 |
+
"d_ff": 5120,
|
104 |
+
"d_kv": 64,
|
105 |
+
"d_model": 2048,
|
106 |
+
"decoder_start_token_id": 0,
|
107 |
+
"dense_act_fn": "gelu",
|
108 |
+
"diversity_penalty": 0.0,
|
109 |
+
"do_sample": false,
|
110 |
+
"dropout_rate": 0.1,
|
111 |
+
"early_stopping": false,
|
112 |
+
"encoder_no_repeat_ngram_size": 0,
|
113 |
+
"eos_token_id": 1,
|
114 |
+
"exponential_decay_length_penalty": null,
|
115 |
+
"feed_forward_proj": "gated-gelu",
|
116 |
+
"finetuning_task": null,
|
117 |
+
"forced_bos_token_id": null,
|
118 |
+
"forced_eos_token_id": null,
|
119 |
+
"id2label": {
|
120 |
+
"0": "LABEL_0",
|
121 |
+
"1": "LABEL_1"
|
122 |
+
},
|
123 |
+
"initializer_factor": 1.0,
|
124 |
+
"is_decoder": false,
|
125 |
+
"is_encoder_decoder": true,
|
126 |
+
"is_gated_act": true,
|
127 |
+
"label2id": {
|
128 |
+
"LABEL_0": 0,
|
129 |
+
"LABEL_1": 1
|
130 |
+
},
|
131 |
+
"layer_norm_epsilon": 1e-06,
|
132 |
+
"length_penalty": 1.0,
|
133 |
+
"max_length": 20,
|
134 |
+
"min_length": 0,
|
135 |
+
"model_type": "t5",
|
136 |
+
"n_positions": 512,
|
137 |
+
"no_repeat_ngram_size": 0,
|
138 |
+
"num_beam_groups": 1,
|
139 |
+
"num_beams": 1,
|
140 |
+
"num_decoder_layers": 24,
|
141 |
+
"num_heads": 32,
|
142 |
+
"num_layers": 24,
|
143 |
+
"num_return_sequences": 1,
|
144 |
+
"output_attentions": false,
|
145 |
+
"output_hidden_states": false,
|
146 |
+
"output_past": true,
|
147 |
+
"output_scores": false,
|
148 |
+
"pad_token_id": 0,
|
149 |
+
"prefix": null,
|
150 |
+
"problem_type": null,
|
151 |
+
"pruned_heads": {},
|
152 |
+
"relative_attention_max_distance": 128,
|
153 |
+
"relative_attention_num_buckets": 32,
|
154 |
+
"remove_invalid_values": false,
|
155 |
+
"repetition_penalty": 1.0,
|
156 |
+
"return_dict": true,
|
157 |
+
"return_dict_in_generate": false,
|
158 |
+
"sep_token_id": null,
|
159 |
+
"suppress_tokens": null,
|
160 |
+
"task_specific_params": {
|
161 |
+
"summarization": {
|
162 |
+
"early_stopping": true,
|
163 |
+
"length_penalty": 2.0,
|
164 |
+
"max_length": 200,
|
165 |
+
"min_length": 30,
|
166 |
+
"no_repeat_ngram_size": 3,
|
167 |
+
"num_beams": 4,
|
168 |
+
"prefix": "summarize: "
|
169 |
+
},
|
170 |
+
"translation_en_to_de": {
|
171 |
+
"early_stopping": true,
|
172 |
+
"max_length": 300,
|
173 |
+
"num_beams": 4,
|
174 |
+
"prefix": "translate English to German: "
|
175 |
+
},
|
176 |
+
"translation_en_to_fr": {
|
177 |
+
"early_stopping": true,
|
178 |
+
"max_length": 300,
|
179 |
+
"num_beams": 4,
|
180 |
+
"prefix": "translate English to French: "
|
181 |
+
},
|
182 |
+
"translation_en_to_ro": {
|
183 |
+
"early_stopping": true,
|
184 |
+
"max_length": 300,
|
185 |
+
"num_beams": 4,
|
186 |
+
"prefix": "translate English to Romanian: "
|
187 |
+
}
|
188 |
+
},
|
189 |
+
"temperature": 1.0,
|
190 |
+
"tf_legacy_loss": false,
|
191 |
+
"tie_encoder_decoder": false,
|
192 |
+
"tie_word_embeddings": false,
|
193 |
+
"tokenizer_class": null,
|
194 |
+
"top_k": 50,
|
195 |
+
"top_p": 1.0,
|
196 |
+
"torch_dtype": "float32",
|
197 |
+
"torchscript": false,
|
198 |
+
"transformers_version": "4.29.2",
|
199 |
+
"typical_p": 1.0,
|
200 |
+
"use_bfloat16": false,
|
201 |
+
"use_cache": true,
|
202 |
+
"vocab_size": 32128
|
203 |
+
},
|
204 |
+
"tie_word_embeddings": false,
|
205 |
+
"torch_dtype": "bfloat16",
|
206 |
+
"transformers_version": null,
|
207 |
+
"use_decoder_only_language_model": false,
|
208 |
+
"vision_config": {
|
209 |
+
"_name_or_path": "",
|
210 |
+
"add_cross_attention": false,
|
211 |
+
"architectures": null,
|
212 |
+
"attention_dropout": 0.0,
|
213 |
+
"bad_words_ids": null,
|
214 |
+
"begin_suppress_tokens": null,
|
215 |
+
"bos_token_id": null,
|
216 |
+
"chunk_size_feed_forward": 0,
|
217 |
+
"cross_attention_hidden_size": null,
|
218 |
+
"decoder_start_token_id": null,
|
219 |
+
"diversity_penalty": 0.0,
|
220 |
+
"do_sample": false,
|
221 |
+
"dropout": 0.0,
|
222 |
+
"early_stopping": false,
|
223 |
+
"encoder_no_repeat_ngram_size": 0,
|
224 |
+
"eos_token_id": null,
|
225 |
+
"exponential_decay_length_penalty": null,
|
226 |
+
"finetuning_task": null,
|
227 |
+
"forced_bos_token_id": null,
|
228 |
+
"forced_eos_token_id": null,
|
229 |
+
"hidden_act": "gelu",
|
230 |
+
"hidden_size": 1408,
|
231 |
+
"id2label": {
|
232 |
+
"0": "LABEL_0",
|
233 |
+
"1": "LABEL_1"
|
234 |
+
},
|
235 |
+
"image_size": 224,
|
236 |
+
"initializer_factor": 1.0,
|
237 |
+
"initializer_range": 1e-10,
|
238 |
+
"intermediate_size": 6144,
|
239 |
+
"is_decoder": false,
|
240 |
+
"is_encoder_decoder": false,
|
241 |
+
"label2id": {
|
242 |
+
"LABEL_0": 0,
|
243 |
+
"LABEL_1": 1
|
244 |
+
},
|
245 |
+
"layer_norm_eps": 1e-05,
|
246 |
+
"length_penalty": 1.0,
|
247 |
+
"max_length": 20,
|
248 |
+
"min_length": 0,
|
249 |
+
"model_type": "instructblip_vision_model",
|
250 |
+
"no_repeat_ngram_size": 0,
|
251 |
+
"num_attention_heads": 16,
|
252 |
+
"num_beam_groups": 1,
|
253 |
+
"num_beams": 1,
|
254 |
+
"num_channels": 3,
|
255 |
+
"num_hidden_layers": 39,
|
256 |
+
"num_return_sequences": 1,
|
257 |
+
"output_attentions": false,
|
258 |
+
"output_hidden_states": false,
|
259 |
+
"output_scores": false,
|
260 |
+
"pad_token_id": null,
|
261 |
+
"patch_size": 14,
|
262 |
+
"prefix": null,
|
263 |
+
"problem_type": null,
|
264 |
+
"projection_dim": 512,
|
265 |
+
"pruned_heads": {},
|
266 |
+
"qkv_bias": true,
|
267 |
+
"remove_invalid_values": false,
|
268 |
+
"repetition_penalty": 1.0,
|
269 |
+
"return_dict": true,
|
270 |
+
"return_dict_in_generate": false,
|
271 |
+
"sep_token_id": null,
|
272 |
+
"suppress_tokens": null,
|
273 |
+
"task_specific_params": null,
|
274 |
+
"temperature": 1.0,
|
275 |
+
"tf_legacy_loss": false,
|
276 |
+
"tie_encoder_decoder": false,
|
277 |
+
"tie_word_embeddings": true,
|
278 |
+
"tokenizer_class": null,
|
279 |
+
"top_k": 50,
|
280 |
+
"top_p": 1.0,
|
281 |
+
"torch_dtype": null,
|
282 |
+
"torchscript": false,
|
283 |
+
"transformers_version": "4.29.2",
|
284 |
+
"typical_p": 1.0,
|
285 |
+
"use_bfloat16": false
|
286 |
+
}
|
287 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1500
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f6d48d314bcb8a19ada769dc9af8fcfcfc9be42d221b50f4f55235f7fd1896b
|
3 |
+
size 8046567875
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c68a25d37b0b194d5f39d5814c524d4177edcc93c7db7a776c49cac6f44b2613
|
3 |
+
size 19539
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53b883a036b069efa1e59a3729009e30533185b026ee03a684d4d765323f4314
|
3 |
+
size 19539
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b1376b9b767573d999b4d567a1c07f8456006c2b071a5b322801e3ed02dfdf8
|
3 |
+
size 19539
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f539f195bfec0ddcb112938aaa247d81e7cb19dd57d0680d12b71ed2261fde0d
|
3 |
+
size 19539
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d11c9946f779d146f0ff48b5d0ea3ed57eb631a5ef63ee95eff09fe85a0965ed
|
3 |
+
size 19539
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a94e70f86a5e40d54d6d12a1a47f30d0dbc1c94f37160060be4979a2da03cef
|
3 |
+
size 19539
|
trainer_state.json
ADDED
@@ -0,0 +1,874 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.11633333333333333,
|
3 |
+
"best_model_checkpoint": "checkpoints/instruct_BLIP2_deepSpeed_t5xl_unfreeze_Qformer_Projection_Encoder_DecoderLLM_QV_weight_no_instructqformer/checkpoint-1200",
|
4 |
+
"epoch": 1.271994912020352,
|
5 |
+
"global_step": 1500,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.04,
|
12 |
+
"eval_accuracy": 0.10066666666666667,
|
13 |
+
"eval_avg_bleuScore": 0.028052001625299455,
|
14 |
+
"eval_loss": 1.821718692779541,
|
15 |
+
"eval_rouge1_fmeasure": 0.39566364884376526,
|
16 |
+
"eval_rouge1_precision": 0.40851742029190063,
|
17 |
+
"eval_rouge1_recall": 0.40402013063430786,
|
18 |
+
"eval_rouge2_fmeasure": 0.11902458965778351,
|
19 |
+
"eval_rouge2_precision": 0.12462873011827469,
|
20 |
+
"eval_rouge2_recall": 0.12082352489233017,
|
21 |
+
"eval_rougeL_fmeasure": 0.3664987087249756,
|
22 |
+
"eval_rougeL_precision": 0.37793973088264465,
|
23 |
+
"eval_rougeL_recall": 0.374777227640152,
|
24 |
+
"eval_rougeLsum_fmeasure": 0.36648938059806824,
|
25 |
+
"eval_rougeLsum_precision": 0.3779275715351105,
|
26 |
+
"eval_rougeLsum_recall": 0.3747769892215729,
|
27 |
+
"eval_runtime": 497.9069,
|
28 |
+
"eval_samples_per_second": 6.025,
|
29 |
+
"eval_steps_per_second": 0.084,
|
30 |
+
"step": 50
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"best_epoch": 0,
|
34 |
+
"best_eval_accuracy": 0.10066666666666667,
|
35 |
+
"epoch": 0.04,
|
36 |
+
"step": 50
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 0.08,
|
40 |
+
"eval_accuracy": 0.10766666666666666,
|
41 |
+
"eval_avg_bleuScore": 0.027600931445757548,
|
42 |
+
"eval_loss": 1.7757344245910645,
|
43 |
+
"eval_rouge1_fmeasure": 0.4066351652145386,
|
44 |
+
"eval_rouge1_precision": 0.42435961961746216,
|
45 |
+
"eval_rouge1_recall": 0.4121783375740051,
|
46 |
+
"eval_rouge2_fmeasure": 0.1213102638721466,
|
47 |
+
"eval_rouge2_precision": 0.12911927700042725,
|
48 |
+
"eval_rouge2_recall": 0.12066558748483658,
|
49 |
+
"eval_rougeL_fmeasure": 0.375918984413147,
|
50 |
+
"eval_rougeL_precision": 0.3917166292667389,
|
51 |
+
"eval_rougeL_recall": 0.3817567229270935,
|
52 |
+
"eval_rougeLsum_fmeasure": 0.37593305110931396,
|
53 |
+
"eval_rougeLsum_precision": 0.3917284309864044,
|
54 |
+
"eval_rougeLsum_recall": 0.38177403807640076,
|
55 |
+
"eval_runtime": 665.5797,
|
56 |
+
"eval_samples_per_second": 4.507,
|
57 |
+
"eval_steps_per_second": 0.063,
|
58 |
+
"step": 100
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"best_epoch": 0,
|
62 |
+
"best_eval_accuracy": 0.10766666666666666,
|
63 |
+
"epoch": 0.08,
|
64 |
+
"step": 100
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 0.13,
|
68 |
+
"eval_accuracy": 0.10366666666666667,
|
69 |
+
"eval_avg_bleuScore": 0.027236416570842265,
|
70 |
+
"eval_loss": 1.761132836341858,
|
71 |
+
"eval_rouge1_fmeasure": 0.4095948040485382,
|
72 |
+
"eval_rouge1_precision": 0.4314381182193756,
|
73 |
+
"eval_rouge1_recall": 0.4098112881183624,
|
74 |
+
"eval_rouge2_fmeasure": 0.12273810803890228,
|
75 |
+
"eval_rouge2_precision": 0.13252894580364227,
|
76 |
+
"eval_rouge2_recall": 0.12072920054197311,
|
77 |
+
"eval_rougeL_fmeasure": 0.3781542181968689,
|
78 |
+
"eval_rougeL_precision": 0.3977195620536804,
|
79 |
+
"eval_rougeL_recall": 0.37909412384033203,
|
80 |
+
"eval_rougeLsum_fmeasure": 0.3781542181968689,
|
81 |
+
"eval_rougeLsum_precision": 0.3977195620536804,
|
82 |
+
"eval_rougeLsum_recall": 0.37909412384033203,
|
83 |
+
"eval_runtime": 682.2715,
|
84 |
+
"eval_samples_per_second": 4.397,
|
85 |
+
"eval_steps_per_second": 0.062,
|
86 |
+
"step": 150
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"best_epoch": 0,
|
90 |
+
"best_eval_accuracy": 0.10766666666666666,
|
91 |
+
"epoch": 0.13,
|
92 |
+
"step": 150
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.17,
|
96 |
+
"eval_accuracy": 0.111,
|
97 |
+
"eval_avg_bleuScore": 0.02802771261582772,
|
98 |
+
"eval_loss": 1.752191424369812,
|
99 |
+
"eval_rouge1_fmeasure": 0.4127008020877838,
|
100 |
+
"eval_rouge1_precision": 0.43622446060180664,
|
101 |
+
"eval_rouge1_recall": 0.4123985171318054,
|
102 |
+
"eval_rouge2_fmeasure": 0.12286161631345749,
|
103 |
+
"eval_rouge2_precision": 0.13331134617328644,
|
104 |
+
"eval_rouge2_recall": 0.11954713612794876,
|
105 |
+
"eval_rougeL_fmeasure": 0.38183602690696716,
|
106 |
+
"eval_rougeL_precision": 0.4026814103126526,
|
107 |
+
"eval_rougeL_recall": 0.38258570432662964,
|
108 |
+
"eval_rougeLsum_fmeasure": 0.38183602690696716,
|
109 |
+
"eval_rougeLsum_precision": 0.4026814103126526,
|
110 |
+
"eval_rougeLsum_recall": 0.38258570432662964,
|
111 |
+
"eval_runtime": 651.8851,
|
112 |
+
"eval_samples_per_second": 4.602,
|
113 |
+
"eval_steps_per_second": 0.064,
|
114 |
+
"step": 200
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"best_epoch": 0,
|
118 |
+
"best_eval_accuracy": 0.111,
|
119 |
+
"epoch": 0.17,
|
120 |
+
"step": 200
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 0.21,
|
124 |
+
"eval_accuracy": 0.105,
|
125 |
+
"eval_avg_bleuScore": 0.027756770220274726,
|
126 |
+
"eval_loss": 1.7442187070846558,
|
127 |
+
"eval_rouge1_fmeasure": 0.4091792702674866,
|
128 |
+
"eval_rouge1_precision": 0.4254671335220337,
|
129 |
+
"eval_rouge1_recall": 0.4135805368423462,
|
130 |
+
"eval_rouge2_fmeasure": 0.12273108959197998,
|
131 |
+
"eval_rouge2_precision": 0.13018882274627686,
|
132 |
+
"eval_rouge2_recall": 0.1215042695403099,
|
133 |
+
"eval_rougeL_fmeasure": 0.3773505389690399,
|
134 |
+
"eval_rougeL_precision": 0.3915799856185913,
|
135 |
+
"eval_rougeL_recall": 0.38237836956977844,
|
136 |
+
"eval_rougeLsum_fmeasure": 0.3773505389690399,
|
137 |
+
"eval_rougeLsum_precision": 0.3915799856185913,
|
138 |
+
"eval_rougeLsum_recall": 0.38237836956977844,
|
139 |
+
"eval_runtime": 537.4239,
|
140 |
+
"eval_samples_per_second": 5.582,
|
141 |
+
"eval_steps_per_second": 0.078,
|
142 |
+
"step": 250
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"best_epoch": 0,
|
146 |
+
"best_eval_accuracy": 0.111,
|
147 |
+
"epoch": 0.21,
|
148 |
+
"step": 250
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"epoch": 0.25,
|
152 |
+
"eval_accuracy": 0.10933333333333334,
|
153 |
+
"eval_avg_bleuScore": 0.029238753189643224,
|
154 |
+
"eval_loss": 1.7391133308410645,
|
155 |
+
"eval_rouge1_fmeasure": 0.4145018756389618,
|
156 |
+
"eval_rouge1_precision": 0.4305371046066284,
|
157 |
+
"eval_rouge1_recall": 0.418173223733902,
|
158 |
+
"eval_rouge2_fmeasure": 0.12484551221132278,
|
159 |
+
"eval_rouge2_precision": 0.13209865987300873,
|
160 |
+
"eval_rouge2_recall": 0.123726025223732,
|
161 |
+
"eval_rougeL_fmeasure": 0.3840600848197937,
|
162 |
+
"eval_rougeL_precision": 0.39804303646087646,
|
163 |
+
"eval_rougeL_recall": 0.388366162776947,
|
164 |
+
"eval_rougeLsum_fmeasure": 0.38407862186431885,
|
165 |
+
"eval_rougeLsum_precision": 0.3980652689933777,
|
166 |
+
"eval_rougeLsum_recall": 0.38838204741477966,
|
167 |
+
"eval_runtime": 636.8392,
|
168 |
+
"eval_samples_per_second": 4.711,
|
169 |
+
"eval_steps_per_second": 0.066,
|
170 |
+
"step": 300
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"best_epoch": 0,
|
174 |
+
"best_eval_accuracy": 0.111,
|
175 |
+
"epoch": 0.25,
|
176 |
+
"step": 300
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.3,
|
180 |
+
"eval_accuracy": 0.10833333333333334,
|
181 |
+
"eval_avg_bleuScore": 0.02794275293002526,
|
182 |
+
"eval_loss": 1.7383359670639038,
|
183 |
+
"eval_rouge1_fmeasure": 0.4148719012737274,
|
184 |
+
"eval_rouge1_precision": 0.4366380274295807,
|
185 |
+
"eval_rouge1_recall": 0.41247957944869995,
|
186 |
+
"eval_rouge2_fmeasure": 0.12334803491830826,
|
187 |
+
"eval_rouge2_precision": 0.13329564034938812,
|
188 |
+
"eval_rouge2_recall": 0.11994606256484985,
|
189 |
+
"eval_rougeL_fmeasure": 0.3842999339103699,
|
190 |
+
"eval_rougeL_precision": 0.403416246175766,
|
191 |
+
"eval_rougeL_recall": 0.3831061124801636,
|
192 |
+
"eval_rougeLsum_fmeasure": 0.38431844115257263,
|
193 |
+
"eval_rougeLsum_precision": 0.4034384787082672,
|
194 |
+
"eval_rougeLsum_recall": 0.3831219971179962,
|
195 |
+
"eval_runtime": 613.4876,
|
196 |
+
"eval_samples_per_second": 4.89,
|
197 |
+
"eval_steps_per_second": 0.068,
|
198 |
+
"step": 350
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"best_epoch": 0,
|
202 |
+
"best_eval_accuracy": 0.111,
|
203 |
+
"epoch": 0.3,
|
204 |
+
"step": 350
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.34,
|
208 |
+
"eval_accuracy": 0.11166666666666666,
|
209 |
+
"eval_avg_bleuScore": 0.027422180160880088,
|
210 |
+
"eval_loss": 1.7323437929153442,
|
211 |
+
"eval_rouge1_fmeasure": 0.41112449765205383,
|
212 |
+
"eval_rouge1_precision": 0.42366519570350647,
|
213 |
+
"eval_rouge1_recall": 0.42089518904685974,
|
214 |
+
"eval_rouge2_fmeasure": 0.12152101844549179,
|
215 |
+
"eval_rouge2_precision": 0.1277269721031189,
|
216 |
+
"eval_rouge2_recall": 0.1217166930437088,
|
217 |
+
"eval_rougeL_fmeasure": 0.38071784377098083,
|
218 |
+
"eval_rougeL_precision": 0.39161595702171326,
|
219 |
+
"eval_rougeL_recall": 0.3908142149448395,
|
220 |
+
"eval_rougeLsum_fmeasure": 0.380736380815506,
|
221 |
+
"eval_rougeLsum_precision": 0.3916381895542145,
|
222 |
+
"eval_rougeLsum_recall": 0.39083006978034973,
|
223 |
+
"eval_runtime": 832.3704,
|
224 |
+
"eval_samples_per_second": 3.604,
|
225 |
+
"eval_steps_per_second": 0.05,
|
226 |
+
"step": 400
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"best_epoch": 0,
|
230 |
+
"best_eval_accuracy": 0.11166666666666666,
|
231 |
+
"epoch": 0.34,
|
232 |
+
"step": 400
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 0.38,
|
236 |
+
"eval_accuracy": 0.113,
|
237 |
+
"eval_avg_bleuScore": 0.02941073496143023,
|
238 |
+
"eval_loss": 1.7295702695846558,
|
239 |
+
"eval_rouge1_fmeasure": 0.4182838201522827,
|
240 |
+
"eval_rouge1_precision": 0.4307253062725067,
|
241 |
+
"eval_rouge1_recall": 0.42410746216773987,
|
242 |
+
"eval_rouge2_fmeasure": 0.12393321841955185,
|
243 |
+
"eval_rouge2_precision": 0.1300639659166336,
|
244 |
+
"eval_rouge2_recall": 0.1235329881310463,
|
245 |
+
"eval_rougeL_fmeasure": 0.38701331615448,
|
246 |
+
"eval_rougeL_precision": 0.3976545035839081,
|
247 |
+
"eval_rougeL_recall": 0.3932779133319855,
|
248 |
+
"eval_rougeLsum_fmeasure": 0.38703182339668274,
|
249 |
+
"eval_rougeLsum_precision": 0.3976767063140869,
|
250 |
+
"eval_rougeLsum_recall": 0.3932937681674957,
|
251 |
+
"eval_runtime": 644.9911,
|
252 |
+
"eval_samples_per_second": 4.651,
|
253 |
+
"eval_steps_per_second": 0.065,
|
254 |
+
"step": 450
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"best_epoch": 0,
|
258 |
+
"best_eval_accuracy": 0.113,
|
259 |
+
"epoch": 0.38,
|
260 |
+
"step": 450
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.42,
|
264 |
+
"learning_rate": 9.07225348510492e-05,
|
265 |
+
"loss": 1.4583,
|
266 |
+
"step": 500
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.42,
|
270 |
+
"eval_accuracy": 0.112,
|
271 |
+
"eval_avg_bleuScore": 0.028446144399543603,
|
272 |
+
"eval_loss": 1.7309530973434448,
|
273 |
+
"eval_rouge1_fmeasure": 0.41481727361679077,
|
274 |
+
"eval_rouge1_precision": 0.4275760352611542,
|
275 |
+
"eval_rouge1_recall": 0.4214574098587036,
|
276 |
+
"eval_rouge2_fmeasure": 0.12195532023906708,
|
277 |
+
"eval_rouge2_precision": 0.1282820999622345,
|
278 |
+
"eval_rouge2_recall": 0.12207218259572983,
|
279 |
+
"eval_rougeL_fmeasure": 0.38423991203308105,
|
280 |
+
"eval_rougeL_precision": 0.39524608850479126,
|
281 |
+
"eval_rougeL_recall": 0.39129284024238586,
|
282 |
+
"eval_rougeLsum_fmeasure": 0.38425952196121216,
|
283 |
+
"eval_rougeLsum_precision": 0.3952717185020447,
|
284 |
+
"eval_rougeLsum_recall": 0.3913087248802185,
|
285 |
+
"eval_runtime": 753.8166,
|
286 |
+
"eval_samples_per_second": 3.98,
|
287 |
+
"eval_steps_per_second": 0.056,
|
288 |
+
"step": 500
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"best_epoch": 0,
|
292 |
+
"best_eval_accuracy": 0.113,
|
293 |
+
"epoch": 0.42,
|
294 |
+
"step": 500
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 0.47,
|
298 |
+
"eval_accuracy": 0.109,
|
299 |
+
"eval_avg_bleuScore": 0.02862334846953551,
|
300 |
+
"eval_loss": 1.7262461185455322,
|
301 |
+
"eval_rouge1_fmeasure": 0.41011935472488403,
|
302 |
+
"eval_rouge1_precision": 0.4244203269481659,
|
303 |
+
"eval_rouge1_recall": 0.4158960282802582,
|
304 |
+
"eval_rouge2_fmeasure": 0.12124613672494888,
|
305 |
+
"eval_rouge2_precision": 0.12845604121685028,
|
306 |
+
"eval_rouge2_recall": 0.1203385517001152,
|
307 |
+
"eval_rougeL_fmeasure": 0.37967798113822937,
|
308 |
+
"eval_rougeL_precision": 0.3920755982398987,
|
309 |
+
"eval_rougeL_recall": 0.3858604431152344,
|
310 |
+
"eval_rougeLsum_fmeasure": 0.3796946704387665,
|
311 |
+
"eval_rougeLsum_precision": 0.39209315180778503,
|
312 |
+
"eval_rougeLsum_recall": 0.38587629795074463,
|
313 |
+
"eval_runtime": 521.071,
|
314 |
+
"eval_samples_per_second": 5.757,
|
315 |
+
"eval_steps_per_second": 0.081,
|
316 |
+
"step": 550
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"best_epoch": 0,
|
320 |
+
"best_eval_accuracy": 0.113,
|
321 |
+
"epoch": 0.47,
|
322 |
+
"step": 550
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"epoch": 0.51,
|
326 |
+
"eval_accuracy": 0.11133333333333334,
|
327 |
+
"eval_avg_bleuScore": 0.028583366366724174,
|
328 |
+
"eval_loss": 1.7252265214920044,
|
329 |
+
"eval_rouge1_fmeasure": 0.4135696589946747,
|
330 |
+
"eval_rouge1_precision": 0.42282983660697937,
|
331 |
+
"eval_rouge1_recall": 0.42099812626838684,
|
332 |
+
"eval_rouge2_fmeasure": 0.12228861451148987,
|
333 |
+
"eval_rouge2_precision": 0.1273748129606247,
|
334 |
+
"eval_rouge2_recall": 0.12293525040149689,
|
335 |
+
"eval_rougeL_fmeasure": 0.3833465278148651,
|
336 |
+
"eval_rougeL_precision": 0.391093373298645,
|
337 |
+
"eval_rougeL_recall": 0.39074525237083435,
|
338 |
+
"eval_rougeLsum_fmeasure": 0.38336315751075745,
|
339 |
+
"eval_rougeLsum_precision": 0.39111092686653137,
|
340 |
+
"eval_rougeLsum_recall": 0.3907611072063446,
|
341 |
+
"eval_runtime": 444.5441,
|
342 |
+
"eval_samples_per_second": 6.748,
|
343 |
+
"eval_steps_per_second": 0.094,
|
344 |
+
"step": 600
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"best_epoch": 0,
|
348 |
+
"best_eval_accuracy": 0.113,
|
349 |
+
"epoch": 0.51,
|
350 |
+
"step": 600
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.55,
|
354 |
+
"eval_accuracy": 0.11166666666666666,
|
355 |
+
"eval_avg_bleuScore": 0.0276417871316274,
|
356 |
+
"eval_loss": 1.7287226915359497,
|
357 |
+
"eval_rouge1_fmeasure": 0.41999372839927673,
|
358 |
+
"eval_rouge1_precision": 0.4347474277019501,
|
359 |
+
"eval_rouge1_recall": 0.41890957951545715,
|
360 |
+
"eval_rouge2_fmeasure": 0.1226092204451561,
|
361 |
+
"eval_rouge2_precision": 0.12977544963359833,
|
362 |
+
"eval_rouge2_recall": 0.12063863128423691,
|
363 |
+
"eval_rougeL_fmeasure": 0.38852831721305847,
|
364 |
+
"eval_rougeL_precision": 0.401227742433548,
|
365 |
+
"eval_rougeL_recall": 0.3881692588329315,
|
366 |
+
"eval_rougeLsum_fmeasure": 0.3885473608970642,
|
367 |
+
"eval_rougeLsum_precision": 0.40125155448913574,
|
368 |
+
"eval_rougeLsum_recall": 0.38818514347076416,
|
369 |
+
"eval_runtime": 416.9212,
|
370 |
+
"eval_samples_per_second": 7.196,
|
371 |
+
"eval_steps_per_second": 0.101,
|
372 |
+
"step": 650
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"best_epoch": 0,
|
376 |
+
"best_eval_accuracy": 0.113,
|
377 |
+
"epoch": 0.55,
|
378 |
+
"step": 650
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 0.59,
|
382 |
+
"eval_accuracy": 0.11166666666666666,
|
383 |
+
"eval_avg_bleuScore": 0.028842177291711173,
|
384 |
+
"eval_loss": 1.7268632650375366,
|
385 |
+
"eval_rouge1_fmeasure": 0.4184536039829254,
|
386 |
+
"eval_rouge1_precision": 0.4310172498226166,
|
387 |
+
"eval_rouge1_recall": 0.4187770485877991,
|
388 |
+
"eval_rouge2_fmeasure": 0.12251175940036774,
|
389 |
+
"eval_rouge2_precision": 0.12893937528133392,
|
390 |
+
"eval_rouge2_recall": 0.12104275822639465,
|
391 |
+
"eval_rougeL_fmeasure": 0.38783329725265503,
|
392 |
+
"eval_rougeL_precision": 0.398539274930954,
|
393 |
+
"eval_rougeL_recall": 0.3887461721897125,
|
394 |
+
"eval_rougeLsum_fmeasure": 0.38785290718078613,
|
395 |
+
"eval_rougeLsum_precision": 0.3985649049282074,
|
396 |
+
"eval_rougeLsum_recall": 0.38876205682754517,
|
397 |
+
"eval_runtime": 417.6826,
|
398 |
+
"eval_samples_per_second": 7.182,
|
399 |
+
"eval_steps_per_second": 0.101,
|
400 |
+
"step": 700
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"best_epoch": 0,
|
404 |
+
"best_eval_accuracy": 0.113,
|
405 |
+
"epoch": 0.59,
|
406 |
+
"step": 700
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 0.64,
|
410 |
+
"eval_accuracy": 0.115,
|
411 |
+
"eval_avg_bleuScore": 0.0290608666613698,
|
412 |
+
"eval_loss": 1.721261739730835,
|
413 |
+
"eval_rouge1_fmeasure": 0.4215930998325348,
|
414 |
+
"eval_rouge1_precision": 0.43335336446762085,
|
415 |
+
"eval_rouge1_recall": 0.4254607856273651,
|
416 |
+
"eval_rouge2_fmeasure": 0.12333113700151443,
|
417 |
+
"eval_rouge2_precision": 0.1291794627904892,
|
418 |
+
"eval_rouge2_recall": 0.123162180185318,
|
419 |
+
"eval_rougeL_fmeasure": 0.39064252376556396,
|
420 |
+
"eval_rougeL_precision": 0.40073809027671814,
|
421 |
+
"eval_rougeL_recall": 0.39462339878082275,
|
422 |
+
"eval_rougeLsum_fmeasure": 0.39064013957977295,
|
423 |
+
"eval_rougeLsum_precision": 0.4007423222064972,
|
424 |
+
"eval_rougeLsum_recall": 0.39460596442222595,
|
425 |
+
"eval_runtime": 448.6827,
|
426 |
+
"eval_samples_per_second": 6.686,
|
427 |
+
"eval_steps_per_second": 0.094,
|
428 |
+
"step": 750
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"best_epoch": 0,
|
432 |
+
"best_eval_accuracy": 0.115,
|
433 |
+
"epoch": 0.64,
|
434 |
+
"step": 750
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.68,
|
438 |
+
"eval_accuracy": 0.11366666666666667,
|
439 |
+
"eval_avg_bleuScore": 0.02823698183397452,
|
440 |
+
"eval_loss": 1.719179630279541,
|
441 |
+
"eval_rouge1_fmeasure": 0.4255302846431732,
|
442 |
+
"eval_rouge1_precision": 0.44179973006248474,
|
443 |
+
"eval_rouge1_recall": 0.4235004186630249,
|
444 |
+
"eval_rouge2_fmeasure": 0.12516146898269653,
|
445 |
+
"eval_rouge2_precision": 0.13273605704307556,
|
446 |
+
"eval_rouge2_recall": 0.12307706475257874,
|
447 |
+
"eval_rougeL_fmeasure": 0.3939012885093689,
|
448 |
+
"eval_rougeL_precision": 0.4078863561153412,
|
449 |
+
"eval_rougeL_recall": 0.39276742935180664,
|
450 |
+
"eval_rougeLsum_fmeasure": 0.3939012885093689,
|
451 |
+
"eval_rougeLsum_precision": 0.4078863561153412,
|
452 |
+
"eval_rougeLsum_recall": 0.39276742935180664,
|
453 |
+
"eval_runtime": 428.3483,
|
454 |
+
"eval_samples_per_second": 7.004,
|
455 |
+
"eval_steps_per_second": 0.098,
|
456 |
+
"step": 800
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"best_epoch": 0,
|
460 |
+
"best_eval_accuracy": 0.115,
|
461 |
+
"epoch": 0.68,
|
462 |
+
"step": 800
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 0.72,
|
466 |
+
"eval_accuracy": 0.11433333333333333,
|
467 |
+
"eval_avg_bleuScore": 0.030075389464696248,
|
468 |
+
"eval_loss": 1.716699242591858,
|
469 |
+
"eval_rouge1_fmeasure": 0.42475032806396484,
|
470 |
+
"eval_rouge1_precision": 0.4392147660255432,
|
471 |
+
"eval_rouge1_recall": 0.4252479374408722,
|
472 |
+
"eval_rouge2_fmeasure": 0.12556101381778717,
|
473 |
+
"eval_rouge2_precision": 0.13259626924991608,
|
474 |
+
"eval_rouge2_recall": 0.12433860450983047,
|
475 |
+
"eval_rougeL_fmeasure": 0.39261123538017273,
|
476 |
+
"eval_rougeL_precision": 0.40510380268096924,
|
477 |
+
"eval_rougeL_recall": 0.3936094641685486,
|
478 |
+
"eval_rougeLsum_fmeasure": 0.3926297128200531,
|
479 |
+
"eval_rougeLsum_precision": 0.40512600541114807,
|
480 |
+
"eval_rougeLsum_recall": 0.39362531900405884,
|
481 |
+
"eval_runtime": 416.1761,
|
482 |
+
"eval_samples_per_second": 7.208,
|
483 |
+
"eval_steps_per_second": 0.101,
|
484 |
+
"step": 850
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"best_epoch": 0,
|
488 |
+
"best_eval_accuracy": 0.115,
|
489 |
+
"epoch": 0.72,
|
490 |
+
"step": 850
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 0.76,
|
494 |
+
"eval_accuracy": 0.11333333333333333,
|
495 |
+
"eval_avg_bleuScore": 0.02911172941327095,
|
496 |
+
"eval_loss": 1.7144726514816284,
|
497 |
+
"eval_rouge1_fmeasure": 0.4232616424560547,
|
498 |
+
"eval_rouge1_precision": 0.43622541427612305,
|
499 |
+
"eval_rouge1_recall": 0.4255277216434479,
|
500 |
+
"eval_rouge2_fmeasure": 0.12597259879112244,
|
501 |
+
"eval_rouge2_precision": 0.1326662003993988,
|
502 |
+
"eval_rouge2_recall": 0.12559087574481964,
|
503 |
+
"eval_rougeL_fmeasure": 0.3917687237262726,
|
504 |
+
"eval_rougeL_precision": 0.4028547704219818,
|
505 |
+
"eval_rougeL_recall": 0.39450860023498535,
|
506 |
+
"eval_rougeLsum_fmeasure": 0.39178499579429626,
|
507 |
+
"eval_rougeLsum_precision": 0.40287142992019653,
|
508 |
+
"eval_rougeLsum_recall": 0.3945244550704956,
|
509 |
+
"eval_runtime": 418.7629,
|
510 |
+
"eval_samples_per_second": 7.164,
|
511 |
+
"eval_steps_per_second": 0.1,
|
512 |
+
"step": 900
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"best_epoch": 0,
|
516 |
+
"best_eval_accuracy": 0.115,
|
517 |
+
"epoch": 0.76,
|
518 |
+
"step": 900
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.81,
|
522 |
+
"eval_accuracy": 0.11366666666666667,
|
523 |
+
"eval_avg_bleuScore": 0.02877427616963784,
|
524 |
+
"eval_loss": 1.7141094207763672,
|
525 |
+
"eval_rouge1_fmeasure": 0.42343342304229736,
|
526 |
+
"eval_rouge1_precision": 0.4381575882434845,
|
527 |
+
"eval_rouge1_recall": 0.4245162308216095,
|
528 |
+
"eval_rouge2_fmeasure": 0.12420167028903961,
|
529 |
+
"eval_rouge2_precision": 0.13117600977420807,
|
530 |
+
"eval_rouge2_recall": 0.12346965819597244,
|
531 |
+
"eval_rougeL_fmeasure": 0.3917766809463501,
|
532 |
+
"eval_rougeL_precision": 0.4044066071510315,
|
533 |
+
"eval_rougeL_recall": 0.39342838525772095,
|
534 |
+
"eval_rougeLsum_fmeasure": 0.39179524779319763,
|
535 |
+
"eval_rougeLsum_precision": 0.4044288396835327,
|
536 |
+
"eval_rougeLsum_recall": 0.3934442400932312,
|
537 |
+
"eval_runtime": 412.8924,
|
538 |
+
"eval_samples_per_second": 7.266,
|
539 |
+
"eval_steps_per_second": 0.102,
|
540 |
+
"step": 950
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"best_epoch": 0,
|
544 |
+
"best_eval_accuracy": 0.115,
|
545 |
+
"epoch": 0.81,
|
546 |
+
"step": 950
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 0.85,
|
550 |
+
"learning_rate": 0.0001,
|
551 |
+
"loss": 1.3251,
|
552 |
+
"step": 1000
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 0.85,
|
556 |
+
"eval_accuracy": 0.114,
|
557 |
+
"eval_avg_bleuScore": 0.028698996223509313,
|
558 |
+
"eval_loss": 1.7141406536102295,
|
559 |
+
"eval_rouge1_fmeasure": 0.4231337010860443,
|
560 |
+
"eval_rouge1_precision": 0.43527066707611084,
|
561 |
+
"eval_rouge1_recall": 0.42574357986450195,
|
562 |
+
"eval_rouge2_fmeasure": 0.12320207059383392,
|
563 |
+
"eval_rouge2_precision": 0.12941864132881165,
|
564 |
+
"eval_rouge2_recall": 0.12254573404788971,
|
565 |
+
"eval_rougeL_fmeasure": 0.3913033902645111,
|
566 |
+
"eval_rougeL_precision": 0.40169021487236023,
|
567 |
+
"eval_rougeL_recall": 0.39426353573799133,
|
568 |
+
"eval_rougeLsum_fmeasure": 0.3913209140300751,
|
569 |
+
"eval_rougeLsum_precision": 0.40170982480049133,
|
570 |
+
"eval_rougeLsum_recall": 0.39427945017814636,
|
571 |
+
"eval_runtime": 411.3837,
|
572 |
+
"eval_samples_per_second": 7.292,
|
573 |
+
"eval_steps_per_second": 0.102,
|
574 |
+
"step": 1000
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"best_epoch": 0,
|
578 |
+
"best_eval_accuracy": 0.115,
|
579 |
+
"epoch": 0.85,
|
580 |
+
"step": 1000
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 0.89,
|
584 |
+
"eval_accuracy": 0.115,
|
585 |
+
"eval_avg_bleuScore": 0.028069007659951847,
|
586 |
+
"eval_loss": 1.7145625352859497,
|
587 |
+
"eval_rouge1_fmeasure": 0.4248062074184418,
|
588 |
+
"eval_rouge1_precision": 0.4398679733276367,
|
589 |
+
"eval_rouge1_recall": 0.423473060131073,
|
590 |
+
"eval_rouge2_fmeasure": 0.12515196204185486,
|
591 |
+
"eval_rouge2_precision": 0.13223549723625183,
|
592 |
+
"eval_rouge2_recall": 0.12349213659763336,
|
593 |
+
"eval_rougeL_fmeasure": 0.39318299293518066,
|
594 |
+
"eval_rougeL_precision": 0.405906617641449,
|
595 |
+
"eval_rougeL_recall": 0.39283618330955505,
|
596 |
+
"eval_rougeLsum_fmeasure": 0.39318299293518066,
|
597 |
+
"eval_rougeLsum_precision": 0.405906617641449,
|
598 |
+
"eval_rougeLsum_recall": 0.39283618330955505,
|
599 |
+
"eval_runtime": 423.8761,
|
600 |
+
"eval_samples_per_second": 7.078,
|
601 |
+
"eval_steps_per_second": 0.099,
|
602 |
+
"step": 1050
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"best_epoch": 0,
|
606 |
+
"best_eval_accuracy": 0.115,
|
607 |
+
"epoch": 0.89,
|
608 |
+
"step": 1050
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.93,
|
612 |
+
"eval_accuracy": 0.112,
|
613 |
+
"eval_avg_bleuScore": 0.027762405360738436,
|
614 |
+
"eval_loss": 1.7136757373809814,
|
615 |
+
"eval_rouge1_fmeasure": 0.42095834016799927,
|
616 |
+
"eval_rouge1_precision": 0.43534284830093384,
|
617 |
+
"eval_rouge1_recall": 0.42047563195228577,
|
618 |
+
"eval_rouge2_fmeasure": 0.12339958548545837,
|
619 |
+
"eval_rouge2_precision": 0.13038772344589233,
|
620 |
+
"eval_rouge2_recall": 0.12185768783092499,
|
621 |
+
"eval_rougeL_fmeasure": 0.3895176649093628,
|
622 |
+
"eval_rougeL_precision": 0.4018775522708893,
|
623 |
+
"eval_rougeL_recall": 0.3896372616291046,
|
624 |
+
"eval_rougeLsum_fmeasure": 0.3895343542098999,
|
625 |
+
"eval_rougeLsum_precision": 0.40189510583877563,
|
626 |
+
"eval_rougeLsum_recall": 0.38965311646461487,
|
627 |
+
"eval_runtime": 412.9847,
|
628 |
+
"eval_samples_per_second": 7.264,
|
629 |
+
"eval_steps_per_second": 0.102,
|
630 |
+
"step": 1100
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"best_epoch": 0,
|
634 |
+
"best_eval_accuracy": 0.115,
|
635 |
+
"epoch": 0.93,
|
636 |
+
"step": 1100
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.98,
|
640 |
+
"eval_accuracy": 0.11233333333333333,
|
641 |
+
"eval_avg_bleuScore": 0.029023348152637483,
|
642 |
+
"eval_loss": 1.7126835584640503,
|
643 |
+
"eval_rouge1_fmeasure": 0.42007914185523987,
|
644 |
+
"eval_rouge1_precision": 0.4302547574043274,
|
645 |
+
"eval_rouge1_recall": 0.42434659600257874,
|
646 |
+
"eval_rouge2_fmeasure": 0.12373975664377213,
|
647 |
+
"eval_rouge2_precision": 0.12897014617919922,
|
648 |
+
"eval_rouge2_recall": 0.1240621954202652,
|
649 |
+
"eval_rougeL_fmeasure": 0.38924336433410645,
|
650 |
+
"eval_rougeL_precision": 0.39777547121047974,
|
651 |
+
"eval_rougeL_recall": 0.39375001192092896,
|
652 |
+
"eval_rougeLsum_fmeasure": 0.389260470867157,
|
653 |
+
"eval_rougeLsum_precision": 0.3977939784526825,
|
654 |
+
"eval_rougeLsum_recall": 0.39376595616340637,
|
655 |
+
"eval_runtime": 416.6217,
|
656 |
+
"eval_samples_per_second": 7.201,
|
657 |
+
"eval_steps_per_second": 0.101,
|
658 |
+
"step": 1150
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"best_epoch": 0,
|
662 |
+
"best_eval_accuracy": 0.115,
|
663 |
+
"epoch": 0.98,
|
664 |
+
"step": 1150
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 1.02,
|
668 |
+
"eval_accuracy": 0.11633333333333333,
|
669 |
+
"eval_avg_bleuScore": 0.0286271261125803,
|
670 |
+
"eval_loss": 1.7119219303131104,
|
671 |
+
"eval_rouge1_fmeasure": 0.4223006069660187,
|
672 |
+
"eval_rouge1_precision": 0.43355467915534973,
|
673 |
+
"eval_rouge1_recall": 0.42424923181533813,
|
674 |
+
"eval_rouge2_fmeasure": 0.12183848023414612,
|
675 |
+
"eval_rouge2_precision": 0.12746664881706238,
|
676 |
+
"eval_rouge2_recall": 0.12144064158201218,
|
677 |
+
"eval_rougeL_fmeasure": 0.39173752069473267,
|
678 |
+
"eval_rougeL_precision": 0.4012112319469452,
|
679 |
+
"eval_rougeL_recall": 0.3941992223262787,
|
680 |
+
"eval_rougeLsum_fmeasure": 0.39173752069473267,
|
681 |
+
"eval_rougeLsum_precision": 0.4012112319469452,
|
682 |
+
"eval_rougeLsum_recall": 0.3941992223262787,
|
683 |
+
"eval_runtime": 414.7589,
|
684 |
+
"eval_samples_per_second": 7.233,
|
685 |
+
"eval_steps_per_second": 0.101,
|
686 |
+
"step": 1200
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"best_epoch": 1,
|
690 |
+
"best_eval_accuracy": 0.11633333333333333,
|
691 |
+
"epoch": 1.02,
|
692 |
+
"step": 1200
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 1.06,
|
696 |
+
"eval_accuracy": 0.11333333333333333,
|
697 |
+
"eval_avg_bleuScore": 0.027211002017060917,
|
698 |
+
"eval_loss": 1.714453101158142,
|
699 |
+
"eval_rouge1_fmeasure": 0.41994115710258484,
|
700 |
+
"eval_rouge1_precision": 0.43688705563545227,
|
701 |
+
"eval_rouge1_recall": 0.41850513219833374,
|
702 |
+
"eval_rouge2_fmeasure": 0.12223239243030548,
|
703 |
+
"eval_rouge2_precision": 0.13026195764541626,
|
704 |
+
"eval_rouge2_recall": 0.12033700197935104,
|
705 |
+
"eval_rougeL_fmeasure": 0.3890978693962097,
|
706 |
+
"eval_rougeL_precision": 0.4037608504295349,
|
707 |
+
"eval_rougeL_recall": 0.3884038031101227,
|
708 |
+
"eval_rougeLsum_fmeasure": 0.38911449909210205,
|
709 |
+
"eval_rougeLsum_precision": 0.40377840399742126,
|
710 |
+
"eval_rougeLsum_recall": 0.3884196877479553,
|
711 |
+
"eval_runtime": 435.9324,
|
712 |
+
"eval_samples_per_second": 6.882,
|
713 |
+
"eval_steps_per_second": 0.096,
|
714 |
+
"step": 1250
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"best_epoch": 1,
|
718 |
+
"best_eval_accuracy": 0.11633333333333333,
|
719 |
+
"epoch": 1.06,
|
720 |
+
"step": 1250
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 1.1,
|
724 |
+
"eval_accuracy": 0.11233333333333333,
|
725 |
+
"eval_avg_bleuScore": 0.02936673008153836,
|
726 |
+
"eval_loss": 1.7116132974624634,
|
727 |
+
"eval_rouge1_fmeasure": 0.4216597378253937,
|
728 |
+
"eval_rouge1_precision": 0.4335962235927582,
|
729 |
+
"eval_rouge1_recall": 0.42250940203666687,
|
730 |
+
"eval_rouge2_fmeasure": 0.12213711440563202,
|
731 |
+
"eval_rouge2_precision": 0.12782621383666992,
|
732 |
+
"eval_rouge2_recall": 0.12156455218791962,
|
733 |
+
"eval_rougeL_fmeasure": 0.3895263671875,
|
734 |
+
"eval_rougeL_precision": 0.39964497089385986,
|
735 |
+
"eval_rougeL_recall": 0.39094799757003784,
|
736 |
+
"eval_rougeLsum_fmeasure": 0.38954439759254456,
|
737 |
+
"eval_rougeLsum_precision": 0.39966580271720886,
|
738 |
+
"eval_rougeLsum_recall": 0.3909638524055481,
|
739 |
+
"eval_runtime": 442.558,
|
740 |
+
"eval_samples_per_second": 6.779,
|
741 |
+
"eval_steps_per_second": 0.095,
|
742 |
+
"step": 1300
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"best_epoch": 1,
|
746 |
+
"best_eval_accuracy": 0.11633333333333333,
|
747 |
+
"epoch": 1.1,
|
748 |
+
"step": 1300
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 1.14,
|
752 |
+
"eval_accuracy": 0.11633333333333333,
|
753 |
+
"eval_avg_bleuScore": 0.027918557037909825,
|
754 |
+
"eval_loss": 1.7098476886749268,
|
755 |
+
"eval_rouge1_fmeasure": 0.4242185950279236,
|
756 |
+
"eval_rouge1_precision": 0.4375033378601074,
|
757 |
+
"eval_rouge1_recall": 0.42478516697883606,
|
758 |
+
"eval_rouge2_fmeasure": 0.12248878926038742,
|
759 |
+
"eval_rouge2_precision": 0.12885503470897675,
|
760 |
+
"eval_rouge2_recall": 0.12164236605167389,
|
761 |
+
"eval_rougeL_fmeasure": 0.39410412311553955,
|
762 |
+
"eval_rougeL_precision": 0.40549689531326294,
|
763 |
+
"eval_rougeL_recall": 0.39526131749153137,
|
764 |
+
"eval_rougeLsum_fmeasure": 0.3941212296485901,
|
765 |
+
"eval_rougeLsum_precision": 0.4055154621601105,
|
766 |
+
"eval_rougeLsum_recall": 0.3952771723270416,
|
767 |
+
"eval_runtime": 422.7031,
|
768 |
+
"eval_samples_per_second": 7.097,
|
769 |
+
"eval_steps_per_second": 0.099,
|
770 |
+
"step": 1350
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"best_epoch": 1,
|
774 |
+
"best_eval_accuracy": 0.11633333333333333,
|
775 |
+
"epoch": 1.14,
|
776 |
+
"step": 1350
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 1.19,
|
780 |
+
"eval_accuracy": 0.11266666666666666,
|
781 |
+
"eval_avg_bleuScore": 0.027800548608104388,
|
782 |
+
"eval_loss": 1.7062265872955322,
|
783 |
+
"eval_rouge1_fmeasure": 0.42027780413627625,
|
784 |
+
"eval_rouge1_precision": 0.435363233089447,
|
785 |
+
"eval_rouge1_recall": 0.4199471175670624,
|
786 |
+
"eval_rouge2_fmeasure": 0.12210887670516968,
|
787 |
+
"eval_rouge2_precision": 0.12934038043022156,
|
788 |
+
"eval_rouge2_recall": 0.12082366645336151,
|
789 |
+
"eval_rougeL_fmeasure": 0.38862261176109314,
|
790 |
+
"eval_rougeL_precision": 0.40165209770202637,
|
791 |
+
"eval_rougeL_recall": 0.388929158449173,
|
792 |
+
"eval_rougeLsum_fmeasure": 0.3886396884918213,
|
793 |
+
"eval_rougeLsum_precision": 0.4016706645488739,
|
794 |
+
"eval_rougeLsum_recall": 0.3889450132846832,
|
795 |
+
"eval_runtime": 421.8991,
|
796 |
+
"eval_samples_per_second": 7.111,
|
797 |
+
"eval_steps_per_second": 0.1,
|
798 |
+
"step": 1400
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"best_epoch": 1,
|
802 |
+
"best_eval_accuracy": 0.11633333333333333,
|
803 |
+
"epoch": 1.19,
|
804 |
+
"step": 1400
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 1.23,
|
808 |
+
"eval_accuracy": 0.113,
|
809 |
+
"eval_avg_bleuScore": 0.026157520641883213,
|
810 |
+
"eval_loss": 1.7059766054153442,
|
811 |
+
"eval_rouge1_fmeasure": 0.4198099374771118,
|
812 |
+
"eval_rouge1_precision": 0.43453213572502136,
|
813 |
+
"eval_rouge1_recall": 0.4178878962993622,
|
814 |
+
"eval_rouge2_fmeasure": 0.1191374883055687,
|
815 |
+
"eval_rouge2_precision": 0.12592871487140656,
|
816 |
+
"eval_rouge2_recall": 0.11757373064756393,
|
817 |
+
"eval_rougeL_fmeasure": 0.3882248103618622,
|
818 |
+
"eval_rougeL_precision": 0.40069010853767395,
|
819 |
+
"eval_rougeL_recall": 0.3872298300266266,
|
820 |
+
"eval_rougeLsum_fmeasure": 0.3882444202899933,
|
821 |
+
"eval_rougeLsum_precision": 0.40071573853492737,
|
822 |
+
"eval_rougeLsum_recall": 0.38724568486213684,
|
823 |
+
"eval_runtime": 425.7259,
|
824 |
+
"eval_samples_per_second": 7.047,
|
825 |
+
"eval_steps_per_second": 0.099,
|
826 |
+
"step": 1450
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"best_epoch": 1,
|
830 |
+
"best_eval_accuracy": 0.11633333333333333,
|
831 |
+
"epoch": 1.23,
|
832 |
+
"step": 1450
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 1.27,
|
836 |
+
"learning_rate": 0.0001,
|
837 |
+
"loss": 1.2797,
|
838 |
+
"step": 1500
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 1.27,
|
842 |
+
"eval_accuracy": 0.114,
|
843 |
+
"eval_avg_bleuScore": 0.026971253817280133,
|
844 |
+
"eval_loss": 1.7088124752044678,
|
845 |
+
"eval_rouge1_fmeasure": 0.42218562960624695,
|
846 |
+
"eval_rouge1_precision": 0.43385228514671326,
|
847 |
+
"eval_rouge1_recall": 0.42346033453941345,
|
848 |
+
"eval_rouge2_fmeasure": 0.12264084815979004,
|
849 |
+
"eval_rouge2_precision": 0.1281544268131256,
|
850 |
+
"eval_rouge2_recall": 0.12249463051557541,
|
851 |
+
"eval_rougeL_fmeasure": 0.3912815749645233,
|
852 |
+
"eval_rougeL_precision": 0.4010494649410248,
|
853 |
+
"eval_rougeL_recall": 0.39323461055755615,
|
854 |
+
"eval_rougeLsum_fmeasure": 0.39129638671875,
|
855 |
+
"eval_rougeLsum_precision": 0.40106332302093506,
|
856 |
+
"eval_rougeLsum_recall": 0.3932504951953888,
|
857 |
+
"eval_runtime": 429.3226,
|
858 |
+
"eval_samples_per_second": 6.988,
|
859 |
+
"eval_steps_per_second": 0.098,
|
860 |
+
"step": 1500
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"best_epoch": 1,
|
864 |
+
"best_eval_accuracy": 0.11633333333333333,
|
865 |
+
"epoch": 1.27,
|
866 |
+
"step": 1500
|
867 |
+
}
|
868 |
+
],
|
869 |
+
"max_steps": 4716,
|
870 |
+
"num_train_epochs": 4,
|
871 |
+
"total_flos": 2.130248764531802e+22,
|
872 |
+
"trial_name": null,
|
873 |
+
"trial_params": null
|
874 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb2690f93601f3894e4e2f7f511834e110a8dbd35cdc3d13e655df1773103c4d
|
3 |
+
size 5551
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage == 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# record shared parameters so that they can be recovered based on partners
|
124 |
+
# this is because such parameters holding reference only are not saved by optimizer
|
125 |
+
shared_params = []
|
126 |
+
for param in state_dict["module"]:
|
127 |
+
if param not in [*param_names, *buffer_names]:
|
128 |
+
for share_param in state_dict["module"]:
|
129 |
+
if (state_dict["module"][share_param].data_ptr() == state_dict["module"][param].data_ptr()
|
130 |
+
and share_param != param):
|
131 |
+
shared_params.append([param, share_param])
|
132 |
+
break
|
133 |
+
|
134 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
135 |
+
|
136 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
137 |
+
|
138 |
+
z_model_state = zero_model_state(buffers=buffers,
|
139 |
+
param_shapes=param_shapes,
|
140 |
+
shared_params=shared_params,
|
141 |
+
ds_version=ds_version,
|
142 |
+
frozen_param_shapes=frozen_param_shapes,
|
143 |
+
frozen_param_fragments=frozen_param_fragments)
|
144 |
+
zero_model_states.append(z_model_state)
|
145 |
+
|
146 |
+
return zero_model_states
|
147 |
+
|
148 |
+
|
149 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
150 |
+
|
151 |
+
total_files = len(files)
|
152 |
+
state_dicts = []
|
153 |
+
for f in files:
|
154 |
+
state_dicts.append(torch.load(f, map_location=device))
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage == 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage == 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage == 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
219 |
+
elif zero_stage == 3:
|
220 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
221 |
+
|
222 |
+
|
223 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
224 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
225 |
+
return
|
226 |
+
|
227 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
228 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
229 |
+
|
230 |
+
if debug:
|
231 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
233 |
+
|
234 |
+
wanted_params = len(frozen_param_shapes)
|
235 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
236 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
237 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
238 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
239 |
+
|
240 |
+
total_params = 0
|
241 |
+
total_numel = 0
|
242 |
+
for name, shape in frozen_param_shapes.items():
|
243 |
+
total_params += 1
|
244 |
+
unpartitioned_numel = shape.numel()
|
245 |
+
total_numel += unpartitioned_numel
|
246 |
+
|
247 |
+
state_dict[name] = frozen_param_fragments[name]
|
248 |
+
|
249 |
+
if debug:
|
250 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
251 |
+
|
252 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
253 |
+
|
254 |
+
|
255 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
256 |
+
param_shapes = zero_model_states[0].param_shapes
|
257 |
+
|
258 |
+
# Reconstruction protocol:
|
259 |
+
#
|
260 |
+
# XXX: document this
|
261 |
+
|
262 |
+
if debug:
|
263 |
+
for i in range(world_size):
|
264 |
+
for j in range(len(fp32_flat_groups[0])):
|
265 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
266 |
+
|
267 |
+
# XXX: memory usage doubles here (zero2)
|
268 |
+
num_param_groups = len(fp32_flat_groups[0])
|
269 |
+
merged_single_partition_of_fp32_groups = []
|
270 |
+
for i in range(num_param_groups):
|
271 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
272 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
273 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
274 |
+
avail_numel = sum(
|
275 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
276 |
+
|
277 |
+
if debug:
|
278 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
279 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
280 |
+
# not asserting if there is a mismatch due to possible padding
|
281 |
+
print(f"Have {avail_numel} numels to process.")
|
282 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
283 |
+
|
284 |
+
# params
|
285 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
286 |
+
# out-of-core computing solution
|
287 |
+
total_numel = 0
|
288 |
+
total_params = 0
|
289 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
290 |
+
offset = 0
|
291 |
+
avail_numel = full_single_fp32_vector.numel()
|
292 |
+
for name, shape in shapes.items():
|
293 |
+
|
294 |
+
unpartitioned_numel = shape.numel()
|
295 |
+
total_numel += unpartitioned_numel
|
296 |
+
total_params += 1
|
297 |
+
|
298 |
+
if debug:
|
299 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
300 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
301 |
+
offset += unpartitioned_numel
|
302 |
+
|
303 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
304 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
305 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
306 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
307 |
+
align_to = 2 * world_size
|
308 |
+
|
309 |
+
def zero2_align(x):
|
310 |
+
return align_to * math.ceil(x / align_to)
|
311 |
+
|
312 |
+
if debug:
|
313 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
314 |
+
|
315 |
+
offset = zero2_align(offset)
|
316 |
+
avail_numel = zero2_align(avail_numel)
|
317 |
+
|
318 |
+
if debug:
|
319 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
320 |
+
|
321 |
+
# Sanity check
|
322 |
+
if offset != avail_numel:
|
323 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
324 |
+
|
325 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
326 |
+
|
327 |
+
|
328 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
329 |
+
state_dict = OrderedDict()
|
330 |
+
|
331 |
+
# buffers
|
332 |
+
buffers = zero_model_states[0].buffers
|
333 |
+
state_dict.update(buffers)
|
334 |
+
if debug:
|
335 |
+
print(f"added {len(buffers)} buffers")
|
336 |
+
|
337 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
338 |
+
|
339 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
340 |
+
|
341 |
+
# recover shared parameters
|
342 |
+
for pair in zero_model_states[0].shared_params:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
392 |
+
param_shapes = zero_model_states[0].param_shapes
|
393 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
394 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
395 |
+
# param, re-consolidating each param, while dealing with padding if any
|
396 |
+
|
397 |
+
# merge list of dicts, preserving order
|
398 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
399 |
+
|
400 |
+
if debug:
|
401 |
+
for i in range(world_size):
|
402 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
403 |
+
|
404 |
+
wanted_params = len(param_shapes)
|
405 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
406 |
+
# not asserting if there is a mismatch due to possible padding
|
407 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
408 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
409 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
410 |
+
|
411 |
+
# params
|
412 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
413 |
+
# out-of-core computing solution
|
414 |
+
offset = 0
|
415 |
+
total_numel = 0
|
416 |
+
total_params = 0
|
417 |
+
for name, shape in param_shapes.items():
|
418 |
+
|
419 |
+
unpartitioned_numel = shape.numel()
|
420 |
+
total_numel += unpartitioned_numel
|
421 |
+
total_params += 1
|
422 |
+
|
423 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
424 |
+
|
425 |
+
if debug:
|
426 |
+
print(
|
427 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
428 |
+
)
|
429 |
+
|
430 |
+
# XXX: memory usage doubles here
|
431 |
+
state_dict[name] = torch.cat(
|
432 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
433 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
434 |
+
offset += partitioned_numel
|
435 |
+
|
436 |
+
offset *= world_size
|
437 |
+
|
438 |
+
# Sanity check
|
439 |
+
if offset != avail_numel:
|
440 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
441 |
+
|
442 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
443 |
+
|
444 |
+
|
445 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
446 |
+
state_dict = OrderedDict()
|
447 |
+
|
448 |
+
# buffers
|
449 |
+
buffers = zero_model_states[0].buffers
|
450 |
+
state_dict.update(buffers)
|
451 |
+
if debug:
|
452 |
+
print(f"added {len(buffers)} buffers")
|
453 |
+
|
454 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
455 |
+
|
456 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
457 |
+
|
458 |
+
# recover shared parameters
|
459 |
+
for pair in zero_model_states[0].shared_params:
|
460 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
461 |
+
|
462 |
+
return state_dict
|
463 |
+
|
464 |
+
|
465 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
466 |
+
"""
|
467 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
468 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
469 |
+
via a model hub.
|
470 |
+
|
471 |
+
Args:
|
472 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
473 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
474 |
+
|
475 |
+
Returns:
|
476 |
+
- pytorch ``state_dict``
|
477 |
+
|
478 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
479 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
480 |
+
the checkpoint.
|
481 |
+
|
482 |
+
A typical usage might be ::
|
483 |
+
|
484 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
485 |
+
# do the training and checkpoint saving
|
486 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
487 |
+
model = model.cpu() # move to cpu
|
488 |
+
model.load_state_dict(state_dict)
|
489 |
+
# submit to model hub or save the model to share with others
|
490 |
+
|
491 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
492 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
493 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
494 |
+
|
495 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
496 |
+
|
497 |
+
"""
|
498 |
+
if tag is None:
|
499 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
500 |
+
if os.path.isfile(latest_path):
|
501 |
+
with open(latest_path, 'r') as fd:
|
502 |
+
tag = fd.read().strip()
|
503 |
+
else:
|
504 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
505 |
+
|
506 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
507 |
+
|
508 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
509 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
510 |
+
|
511 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
512 |
+
|
513 |
+
|
514 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
515 |
+
"""
|
516 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
517 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
518 |
+
|
519 |
+
Args:
|
520 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
521 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
522 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
523 |
+
"""
|
524 |
+
|
525 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
526 |
+
print(f"Saving fp32 state dict to {output_file}")
|
527 |
+
torch.save(state_dict, output_file)
|
528 |
+
|
529 |
+
|
530 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
531 |
+
"""
|
532 |
+
1. Put the provided model to cpu
|
533 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
534 |
+
3. Load it into the provided model
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``model``: the model object to update
|
538 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
539 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
540 |
+
|
541 |
+
Returns:
|
542 |
+
- ``model`: modified model
|
543 |
+
|
544 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
545 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
546 |
+
conveniently placed for you in the checkpoint folder.
|
547 |
+
|
548 |
+
A typical usage might be ::
|
549 |
+
|
550 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
551 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
552 |
+
# submit to model hub or save the model to share with others
|
553 |
+
|
554 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
555 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
556 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
557 |
+
|
558 |
+
"""
|
559 |
+
logger.info(f"Extracting fp32 weights")
|
560 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
561 |
+
|
562 |
+
logger.info(f"Overwriting model with fp32 weights")
|
563 |
+
model = model.cpu()
|
564 |
+
model.load_state_dict(state_dict, strict=False)
|
565 |
+
|
566 |
+
return model
|
567 |
+
|
568 |
+
|
569 |
+
if __name__ == "__main__":
|
570 |
+
|
571 |
+
parser = argparse.ArgumentParser()
|
572 |
+
parser.add_argument("checkpoint_dir",
|
573 |
+
type=str,
|
574 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
575 |
+
parser.add_argument(
|
576 |
+
"output_file",
|
577 |
+
type=str,
|
578 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
579 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
580 |
+
args = parser.parse_args()
|
581 |
+
|
582 |
+
debug = args.debug
|
583 |
+
|
584 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|