File size: 3,828 Bytes
e4d61b7
 
 
 
 
 
505bdce
e4d61b7
 
 
 
ca5a95d
 
e4d61b7
 
ca5a95d
 
607b269
ca5a95d
0ddc32b
e4d61b7
0ddc32b
e4d61b7
ca5a95d
e4d61b7
ca5a95d
e4d61b7
ca5a95d
 
e4d61b7
 
 
ca5a95d
 
 
e4d61b7
ca5a95d
e4d61b7
ca5a95d
e4d61b7
 
 
 
ca5a95d
 
 
 
 
 
 
 
 
 
 
 
e4d61b7
ca5a95d
 
 
 
 
 
 
 
e4d61b7
 
ca5a95d
e4d61b7
ca5a95d
 
 
 
 
 
e4d61b7
ca5a95d
 
e4d61b7
 
ca5a95d
e4d61b7
ca5a95d
e4d61b7
ca5a95d
e4d61b7
ca5a95d
 
 
e4d61b7
ca5a95d
 
 
 
 
 
 
 
 
e4d61b7
ca5a95d
e4d61b7
ca5a95d
 
e4d61b7
ca5a95d
e4d61b7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: mit
language:
- en
library_name: transformers
---
# Model Card for MMICL

<!-- Provide a quick summary of what the model is/does. -->

## Model Details
**MMICL(Multi-Modal In-Context Learning)** is a multimodal vision-language model that incorporates blip2/instrcutblip. 
It has the ability to analyze and understand multiple images, as well as follow instructions. 


### Model Description
MMICL outperforms the VL model of the same size and performs exceptionally well on complex visual reasoning datasets. 
Till 21st Aug. 2023, it achieves **state-of-the-art** performance on both multimodal task leaderboards and a wide range of vision-language tasks. 
Furthermore, it showcases new capabilities in video understanding and multimodal in-context learning (M-ICL).
+ **Capability of multiple images refering and reasoning**

+ **Manually constructed In-context instruction tuning dataset**

+ Till 21st Aug. 2023 **1st on [MME](https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation), 1st on [MMBench](https://opencompass.org.cn/leaderboard-multimodal)**

+ Visual Encoder:  VIT-L from CLIP/ ViT-G/14 from EVA-CLIP 

+ Pre-trained LLM: FlanT5-XL/ FlanT5-XXL/ Vicuna-7B/ Vicuna-13B
<!-- Provide a longer summary of what this model is. -->



- **Developed by:** [More Information Needed]
- **License:** MIT
- **Finetuned from model :** [instructblip-flan-t5-xxl](https://huggingface.co/Salesforce/instructblip-flan-t5-xxl)

<!-- Provide the basic links for the model. -->

- **Repository:** [MMICL](https://github.com/HaozheZhao/MIC)


## How to Get Started with the Model

```
# For T5 based model
from model.instructblip import InstructBlipConfig, InstructBlipModel, InstructBlipPreTrainedModel,InstructBlipForConditionalGeneration,InstructBlipProcessor
import datasets
import json
import transformers
from PIL import Image
import torch
from model.blip2 import Blip2Processor,Blip2ForConditionalGeneration
from model.blip2 import Blip2Config
model_type="instructblip"
model_ckpt="BleachNick/MMICL-Instructblip-T5-xxl"

if 'blip2' in model_type:
    model = Blip2ForConditionalGeneration.from_pretrained(
            model_ckpt,
            config=config).to('cuda:0',dtype=torch.bfloat16)
elif 'instructblip' in model_type:
    model = InstructBlipForConditionalGeneration.from_pretrained(
        model_ckpt,
        config=config).to('cuda:0',dtype=torch.bfloat16) 


sp = ["图"]+[f"<image{i}>" for i in range(20)]

processor = InstructBlipProcessor.from_pretrained(
    model_ckpt
)
# processor = Blip2Processor.from_pretrained(
#     model_ckpt
# )

sp = sp+processor.tokenizer.additional_special_tokens[len(sp):]
processor.tokenizer.add_special_tokens({'additional_special_tokens':sp})


prompt = ['Use the image 0: <image0>图,image 1: <image1>图 and image 2: <image2>图 as a visual aid to help you calculate the equation accurately. image 0 is 2+1=3.\nimage 1 is 5+6=11.\nimage 2 is"']

prompt = " ".join(prompt)

inputs = processor(images=images, text=prompt, return_tensors="pt")

inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
inputs['img_mask'] = torch.tensor([[1 for i in range(len(images))]])
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)

inputs = inputs.to('cuda:0')
outputs = model.generate(
        pixel_values = inputs['pixel_values'],
        input_ids = inputs['input_ids'],
        attention_mask = inputs['attention_mask'],
        img_mask = inputs['img_mask']
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
print(generated_text)

```

####
 Training Hyperparameters

- **Training regime:** [fp32, bf16 mixed precision, bf16 non-mixed precision] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->