Bleking commited on
Commit
9f9eba4
·
1 Parent(s): 1a1ec26

push llava-v1.6-mistral-7b

Browse files
Files changed (39) hide show
  1. README.md +202 -0
  2. adapter_config.json +34 -0
  3. adapter_model.safetensors +3 -0
  4. checkpoint-125/README.md +202 -0
  5. checkpoint-125/adapter_config.json +34 -0
  6. checkpoint-125/adapter_model.safetensors +3 -0
  7. checkpoint-125/global_step125/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  8. checkpoint-125/global_step125/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-125/global_step125/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  10. checkpoint-125/global_step125/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-125/latest +1 -0
  12. checkpoint-125/rng_state_0.pth +3 -0
  13. checkpoint-125/rng_state_1.pth +3 -0
  14. checkpoint-125/special_tokens_map.json +24 -0
  15. checkpoint-125/tokenizer.model +3 -0
  16. checkpoint-125/tokenizer_config.json +45 -0
  17. checkpoint-125/trainer_state.json +1908 -0
  18. checkpoint-125/training_args.bin +3 -0
  19. checkpoint-125/zero_to_fp32.py +604 -0
  20. checkpoint-248/README.md +202 -0
  21. checkpoint-248/adapter_config.json +34 -0
  22. checkpoint-248/adapter_model.safetensors +3 -0
  23. checkpoint-248/global_step248/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  24. checkpoint-248/global_step248/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  25. checkpoint-248/global_step248/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  26. checkpoint-248/global_step248/zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  27. checkpoint-248/latest +1 -0
  28. checkpoint-248/rng_state_0.pth +3 -0
  29. checkpoint-248/rng_state_1.pth +3 -0
  30. checkpoint-248/special_tokens_map.json +24 -0
  31. checkpoint-248/tokenizer.model +3 -0
  32. checkpoint-248/tokenizer_config.json +45 -0
  33. checkpoint-248/trainer_state.json +3753 -0
  34. checkpoint-248/training_args.bin +3 -0
  35. checkpoint-248/zero_to_fp32.py +604 -0
  36. config.json +75 -0
  37. non_lora_trainables.bin +3 -0
  38. optimizer.pt +3 -0
  39. trainer_state.json +2367 -0
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "k_proj",
25
+ "down_proj",
26
+ "up_proj",
27
+ "gate_proj",
28
+ "v_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d1971af5a9b11de1f6838afa35ac3d724190147099272120bffd9b3c5163ce3
3
+ size 44387440
checkpoint-125/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-125/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "down_proj",
24
+ "q_proj",
25
+ "up_proj",
26
+ "o_proj",
27
+ "k_proj",
28
+ "v_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-125/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d1971af5a9b11de1f6838afa35ac3d724190147099272120bffd9b3c5163ce3
3
+ size 44387440
checkpoint-125/global_step125/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d49e00bc15726ea9dbea788cadae02446e9209f958323626568fe735627139f
3
+ size 663858
checkpoint-125/global_step125/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4692ba939a6c56288bd8987774945c8129a1627131f57c31c6b6e0ee1f2fb18
3
+ size 258789357
checkpoint-125/global_step125/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:066ba4e5576f9d8573646fedfcf414d3b9b1bbcaf8eea45f01baf46b6686bb8b
3
+ size 663858
checkpoint-125/global_step125/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b9994ef4fede9b587d0236aa44b7b9720e1e1b5afa6aa5006c8e158b0406f26
3
+ size 258789357
checkpoint-125/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step125
checkpoint-125/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0c87c21bd066bc64b06257b0cc8e31b0f640ffcf453027fd8e543ecab77a368
3
+ size 14512
checkpoint-125/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee81a002fb37d4cc0a9c2d509ae2a7b211b23ace5ecd3e43505f3a3110795529
3
+ size 14512
checkpoint-125/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-125/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-125/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "legacy": true,
37
+ "model_max_length": 4096,
38
+ "pad_token": "<unk>",
39
+ "padding_side": "right",
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-125/trainer_state.json ADDED
@@ -0,0 +1,1908 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6666322350502014,
3
+ "best_model_checkpoint": "./checkpoints/llava-v1.6-mistral/checkpoint-125",
4
+ "epoch": 4.024,
5
+ "eval_steps": 1.0,
6
+ "global_step": 125,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.032,
13
+ "grad_norm": 1.3562940564009667,
14
+ "learning_rate": 0.0,
15
+ "loss": 1.2069,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.032,
20
+ "eval_loss": 1.189530849456787,
21
+ "eval_runtime": 100.6384,
22
+ "eval_samples_per_second": 1.987,
23
+ "eval_steps_per_second": 0.497,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.064,
28
+ "grad_norm": 1.3726335882966116,
29
+ "learning_rate": 7.737056144690831e-06,
30
+ "loss": 1.242,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.064,
35
+ "eval_loss": 1.189530849456787,
36
+ "eval_runtime": 95.3713,
37
+ "eval_samples_per_second": 2.097,
38
+ "eval_steps_per_second": 0.524,
39
+ "step": 2
40
+ },
41
+ {
42
+ "epoch": 0.096,
43
+ "grad_norm": 1.267071497789874,
44
+ "learning_rate": 1.2262943855309169e-05,
45
+ "loss": 1.1588,
46
+ "step": 3
47
+ },
48
+ {
49
+ "epoch": 0.096,
50
+ "eval_loss": 1.1675384044647217,
51
+ "eval_runtime": 99.4768,
52
+ "eval_samples_per_second": 2.011,
53
+ "eval_steps_per_second": 0.503,
54
+ "step": 3
55
+ },
56
+ {
57
+ "epoch": 0.128,
58
+ "grad_norm": 1.2066781722006759,
59
+ "learning_rate": 1.5474112289381662e-05,
60
+ "loss": 1.1196,
61
+ "step": 4
62
+ },
63
+ {
64
+ "epoch": 0.128,
65
+ "eval_loss": 1.1391011476516724,
66
+ "eval_runtime": 95.4777,
67
+ "eval_samples_per_second": 2.095,
68
+ "eval_steps_per_second": 0.524,
69
+ "step": 4
70
+ },
71
+ {
72
+ "epoch": 0.16,
73
+ "grad_norm": 1.2746210039866817,
74
+ "learning_rate": 1.7964888034078543e-05,
75
+ "loss": 1.1462,
76
+ "step": 5
77
+ },
78
+ {
79
+ "epoch": 0.16,
80
+ "eval_loss": 1.1023523807525635,
81
+ "eval_runtime": 95.4138,
82
+ "eval_samples_per_second": 2.096,
83
+ "eval_steps_per_second": 0.524,
84
+ "step": 5
85
+ },
86
+ {
87
+ "epoch": 0.192,
88
+ "grad_norm": 1.0552650848120237,
89
+ "learning_rate": 1.9999999999999998e-05,
90
+ "loss": 1.1147,
91
+ "step": 6
92
+ },
93
+ {
94
+ "epoch": 0.192,
95
+ "eval_loss": 1.063745379447937,
96
+ "eval_runtime": 97.6633,
97
+ "eval_samples_per_second": 2.048,
98
+ "eval_steps_per_second": 0.512,
99
+ "step": 6
100
+ },
101
+ {
102
+ "epoch": 0.224,
103
+ "grad_norm": 1.0779287740182022,
104
+ "learning_rate": 2e-05,
105
+ "loss": 1.1773,
106
+ "step": 7
107
+ },
108
+ {
109
+ "epoch": 0.224,
110
+ "eval_loss": 1.024451732635498,
111
+ "eval_runtime": 97.388,
112
+ "eval_samples_per_second": 2.054,
113
+ "eval_steps_per_second": 0.513,
114
+ "step": 7
115
+ },
116
+ {
117
+ "epoch": 0.256,
118
+ "grad_norm": 0.9918200495785524,
119
+ "learning_rate": 2e-05,
120
+ "loss": 1.0434,
121
+ "step": 8
122
+ },
123
+ {
124
+ "epoch": 0.256,
125
+ "eval_loss": 0.9906812906265259,
126
+ "eval_runtime": 97.2423,
127
+ "eval_samples_per_second": 2.057,
128
+ "eval_steps_per_second": 0.514,
129
+ "step": 8
130
+ },
131
+ {
132
+ "epoch": 0.288,
133
+ "grad_norm": 0.9119239308208719,
134
+ "learning_rate": 2e-05,
135
+ "loss": 1.0527,
136
+ "step": 9
137
+ },
138
+ {
139
+ "epoch": 0.288,
140
+ "eval_loss": 0.9626247882843018,
141
+ "eval_runtime": 97.2048,
142
+ "eval_samples_per_second": 2.058,
143
+ "eval_steps_per_second": 0.514,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 0.32,
148
+ "grad_norm": 0.7292073828818868,
149
+ "learning_rate": 2e-05,
150
+ "loss": 0.9801,
151
+ "step": 10
152
+ },
153
+ {
154
+ "epoch": 0.32,
155
+ "eval_loss": 0.9422003030776978,
156
+ "eval_runtime": 97.143,
157
+ "eval_samples_per_second": 2.059,
158
+ "eval_steps_per_second": 0.515,
159
+ "step": 10
160
+ },
161
+ {
162
+ "epoch": 0.352,
163
+ "grad_norm": 0.8195137858461904,
164
+ "learning_rate": 2e-05,
165
+ "loss": 1.0104,
166
+ "step": 11
167
+ },
168
+ {
169
+ "epoch": 0.352,
170
+ "eval_loss": 0.9264165759086609,
171
+ "eval_runtime": 97.2279,
172
+ "eval_samples_per_second": 2.057,
173
+ "eval_steps_per_second": 0.514,
174
+ "step": 11
175
+ },
176
+ {
177
+ "epoch": 0.384,
178
+ "grad_norm": 0.7060464565699565,
179
+ "learning_rate": 2e-05,
180
+ "loss": 0.9764,
181
+ "step": 12
182
+ },
183
+ {
184
+ "epoch": 0.384,
185
+ "eval_loss": 0.9138455986976624,
186
+ "eval_runtime": 97.0954,
187
+ "eval_samples_per_second": 2.06,
188
+ "eval_steps_per_second": 0.515,
189
+ "step": 12
190
+ },
191
+ {
192
+ "epoch": 0.416,
193
+ "grad_norm": 0.8207130544099034,
194
+ "learning_rate": 2e-05,
195
+ "loss": 1.0371,
196
+ "step": 13
197
+ },
198
+ {
199
+ "epoch": 0.416,
200
+ "eval_loss": 0.902658224105835,
201
+ "eval_runtime": 100.8924,
202
+ "eval_samples_per_second": 1.982,
203
+ "eval_steps_per_second": 0.496,
204
+ "step": 13
205
+ },
206
+ {
207
+ "epoch": 0.448,
208
+ "grad_norm": 0.7962544586919155,
209
+ "learning_rate": 2e-05,
210
+ "loss": 0.9455,
211
+ "step": 14
212
+ },
213
+ {
214
+ "epoch": 0.448,
215
+ "eval_loss": 0.8926536440849304,
216
+ "eval_runtime": 100.856,
217
+ "eval_samples_per_second": 1.983,
218
+ "eval_steps_per_second": 0.496,
219
+ "step": 14
220
+ },
221
+ {
222
+ "epoch": 0.48,
223
+ "grad_norm": 0.8246421268957655,
224
+ "learning_rate": 2e-05,
225
+ "loss": 0.9456,
226
+ "step": 15
227
+ },
228
+ {
229
+ "epoch": 0.48,
230
+ "eval_loss": 0.8823295831680298,
231
+ "eval_runtime": 97.0568,
232
+ "eval_samples_per_second": 2.061,
233
+ "eval_steps_per_second": 0.515,
234
+ "step": 15
235
+ },
236
+ {
237
+ "epoch": 0.512,
238
+ "grad_norm": 0.7040845257818263,
239
+ "learning_rate": 2e-05,
240
+ "loss": 0.9283,
241
+ "step": 16
242
+ },
243
+ {
244
+ "epoch": 0.512,
245
+ "eval_loss": 0.8721897602081299,
246
+ "eval_runtime": 98.318,
247
+ "eval_samples_per_second": 2.034,
248
+ "eval_steps_per_second": 0.509,
249
+ "step": 16
250
+ },
251
+ {
252
+ "epoch": 0.544,
253
+ "grad_norm": 0.7904707927869743,
254
+ "learning_rate": 2e-05,
255
+ "loss": 0.9786,
256
+ "step": 17
257
+ },
258
+ {
259
+ "epoch": 0.544,
260
+ "eval_loss": 0.861838698387146,
261
+ "eval_runtime": 101.4487,
262
+ "eval_samples_per_second": 1.971,
263
+ "eval_steps_per_second": 0.493,
264
+ "step": 17
265
+ },
266
+ {
267
+ "epoch": 0.576,
268
+ "grad_norm": 0.7605583546638608,
269
+ "learning_rate": 2e-05,
270
+ "loss": 0.9361,
271
+ "step": 18
272
+ },
273
+ {
274
+ "epoch": 0.576,
275
+ "eval_loss": 0.8519415259361267,
276
+ "eval_runtime": 98.2448,
277
+ "eval_samples_per_second": 2.036,
278
+ "eval_steps_per_second": 0.509,
279
+ "step": 18
280
+ },
281
+ {
282
+ "epoch": 0.608,
283
+ "grad_norm": 0.7005232039249588,
284
+ "learning_rate": 2e-05,
285
+ "loss": 0.8707,
286
+ "step": 19
287
+ },
288
+ {
289
+ "epoch": 0.608,
290
+ "eval_loss": 0.842995822429657,
291
+ "eval_runtime": 98.3165,
292
+ "eval_samples_per_second": 2.034,
293
+ "eval_steps_per_second": 0.509,
294
+ "step": 19
295
+ },
296
+ {
297
+ "epoch": 0.64,
298
+ "grad_norm": 0.653693259495668,
299
+ "learning_rate": 2e-05,
300
+ "loss": 0.9332,
301
+ "step": 20
302
+ },
303
+ {
304
+ "epoch": 0.64,
305
+ "eval_loss": 0.8355565071105957,
306
+ "eval_runtime": 98.237,
307
+ "eval_samples_per_second": 2.036,
308
+ "eval_steps_per_second": 0.509,
309
+ "step": 20
310
+ },
311
+ {
312
+ "epoch": 0.672,
313
+ "grad_norm": 0.6600451404133434,
314
+ "learning_rate": 2e-05,
315
+ "loss": 0.8848,
316
+ "step": 21
317
+ },
318
+ {
319
+ "epoch": 0.672,
320
+ "eval_loss": 0.8297473788261414,
321
+ "eval_runtime": 98.1825,
322
+ "eval_samples_per_second": 2.037,
323
+ "eval_steps_per_second": 0.509,
324
+ "step": 21
325
+ },
326
+ {
327
+ "epoch": 0.704,
328
+ "grad_norm": 0.6666525650519819,
329
+ "learning_rate": 2e-05,
330
+ "loss": 0.9261,
331
+ "step": 22
332
+ },
333
+ {
334
+ "epoch": 0.704,
335
+ "eval_loss": 0.8248497247695923,
336
+ "eval_runtime": 98.1541,
337
+ "eval_samples_per_second": 2.038,
338
+ "eval_steps_per_second": 0.509,
339
+ "step": 22
340
+ },
341
+ {
342
+ "epoch": 0.736,
343
+ "grad_norm": 0.6759718697778233,
344
+ "learning_rate": 2e-05,
345
+ "loss": 1.0103,
346
+ "step": 23
347
+ },
348
+ {
349
+ "epoch": 0.736,
350
+ "eval_loss": 0.8214980959892273,
351
+ "eval_runtime": 98.2494,
352
+ "eval_samples_per_second": 2.036,
353
+ "eval_steps_per_second": 0.509,
354
+ "step": 23
355
+ },
356
+ {
357
+ "epoch": 0.768,
358
+ "grad_norm": 0.651870418762904,
359
+ "learning_rate": 2e-05,
360
+ "loss": 0.9538,
361
+ "step": 24
362
+ },
363
+ {
364
+ "epoch": 0.768,
365
+ "eval_loss": 0.818403959274292,
366
+ "eval_runtime": 97.9476,
367
+ "eval_samples_per_second": 2.042,
368
+ "eval_steps_per_second": 0.51,
369
+ "step": 24
370
+ },
371
+ {
372
+ "epoch": 0.8,
373
+ "grad_norm": 0.6985872283132858,
374
+ "learning_rate": 2e-05,
375
+ "loss": 0.8216,
376
+ "step": 25
377
+ },
378
+ {
379
+ "epoch": 0.8,
380
+ "eval_loss": 0.8149588108062744,
381
+ "eval_runtime": 95.6175,
382
+ "eval_samples_per_second": 2.092,
383
+ "eval_steps_per_second": 0.523,
384
+ "step": 25
385
+ },
386
+ {
387
+ "epoch": 0.832,
388
+ "grad_norm": 0.7801182369335715,
389
+ "learning_rate": 2e-05,
390
+ "loss": 0.8478,
391
+ "step": 26
392
+ },
393
+ {
394
+ "epoch": 0.832,
395
+ "eval_loss": 0.8100517392158508,
396
+ "eval_runtime": 99.7733,
397
+ "eval_samples_per_second": 2.005,
398
+ "eval_steps_per_second": 0.501,
399
+ "step": 26
400
+ },
401
+ {
402
+ "epoch": 0.864,
403
+ "grad_norm": 0.6727766374526198,
404
+ "learning_rate": 2e-05,
405
+ "loss": 0.9015,
406
+ "step": 27
407
+ },
408
+ {
409
+ "epoch": 0.864,
410
+ "eval_loss": 0.8051578998565674,
411
+ "eval_runtime": 95.7387,
412
+ "eval_samples_per_second": 2.089,
413
+ "eval_steps_per_second": 0.522,
414
+ "step": 27
415
+ },
416
+ {
417
+ "epoch": 0.896,
418
+ "grad_norm": 0.7398381040653764,
419
+ "learning_rate": 2e-05,
420
+ "loss": 0.8434,
421
+ "step": 28
422
+ },
423
+ {
424
+ "epoch": 0.896,
425
+ "eval_loss": 0.7998965382575989,
426
+ "eval_runtime": 95.7753,
427
+ "eval_samples_per_second": 2.088,
428
+ "eval_steps_per_second": 0.522,
429
+ "step": 28
430
+ },
431
+ {
432
+ "epoch": 0.928,
433
+ "grad_norm": 0.6837341164482282,
434
+ "learning_rate": 2e-05,
435
+ "loss": 0.9124,
436
+ "step": 29
437
+ },
438
+ {
439
+ "epoch": 0.928,
440
+ "eval_loss": 0.7946869134902954,
441
+ "eval_runtime": 95.933,
442
+ "eval_samples_per_second": 2.085,
443
+ "eval_steps_per_second": 0.521,
444
+ "step": 29
445
+ },
446
+ {
447
+ "epoch": 0.96,
448
+ "grad_norm": 0.7285508052728015,
449
+ "learning_rate": 2e-05,
450
+ "loss": 0.8252,
451
+ "step": 30
452
+ },
453
+ {
454
+ "epoch": 0.96,
455
+ "eval_loss": 0.7891057729721069,
456
+ "eval_runtime": 95.871,
457
+ "eval_samples_per_second": 2.086,
458
+ "eval_steps_per_second": 0.522,
459
+ "step": 30
460
+ },
461
+ {
462
+ "epoch": 0.992,
463
+ "grad_norm": 0.706524788728722,
464
+ "learning_rate": 2e-05,
465
+ "loss": 0.8382,
466
+ "step": 31
467
+ },
468
+ {
469
+ "epoch": 0.992,
470
+ "eval_loss": 0.7835636138916016,
471
+ "eval_runtime": 95.7491,
472
+ "eval_samples_per_second": 2.089,
473
+ "eval_steps_per_second": 0.522,
474
+ "step": 31
475
+ },
476
+ {
477
+ "epoch": 1.024,
478
+ "grad_norm": 0.7392763969473979,
479
+ "learning_rate": 2e-05,
480
+ "loss": 0.8586,
481
+ "step": 32
482
+ },
483
+ {
484
+ "epoch": 1.024,
485
+ "eval_loss": 0.7780101299285889,
486
+ "eval_runtime": 99.7493,
487
+ "eval_samples_per_second": 2.005,
488
+ "eval_steps_per_second": 0.501,
489
+ "step": 32
490
+ },
491
+ {
492
+ "epoch": 1.056,
493
+ "grad_norm": 0.7407143277408553,
494
+ "learning_rate": 2e-05,
495
+ "loss": 0.8438,
496
+ "step": 33
497
+ },
498
+ {
499
+ "epoch": 1.056,
500
+ "eval_loss": 0.7728690505027771,
501
+ "eval_runtime": 95.8863,
502
+ "eval_samples_per_second": 2.086,
503
+ "eval_steps_per_second": 0.521,
504
+ "step": 33
505
+ },
506
+ {
507
+ "epoch": 1.088,
508
+ "grad_norm": 0.7146296362894146,
509
+ "learning_rate": 2e-05,
510
+ "loss": 0.8357,
511
+ "step": 34
512
+ },
513
+ {
514
+ "epoch": 1.088,
515
+ "eval_loss": 0.7683935761451721,
516
+ "eval_runtime": 97.824,
517
+ "eval_samples_per_second": 2.044,
518
+ "eval_steps_per_second": 0.511,
519
+ "step": 34
520
+ },
521
+ {
522
+ "epoch": 1.12,
523
+ "grad_norm": 0.7117142678212836,
524
+ "learning_rate": 2e-05,
525
+ "loss": 0.7884,
526
+ "step": 35
527
+ },
528
+ {
529
+ "epoch": 1.12,
530
+ "eval_loss": 0.7646369338035583,
531
+ "eval_runtime": 95.8185,
532
+ "eval_samples_per_second": 2.087,
533
+ "eval_steps_per_second": 0.522,
534
+ "step": 35
535
+ },
536
+ {
537
+ "epoch": 1.152,
538
+ "grad_norm": 0.7735767817076163,
539
+ "learning_rate": 2e-05,
540
+ "loss": 0.8851,
541
+ "step": 36
542
+ },
543
+ {
544
+ "epoch": 1.152,
545
+ "eval_loss": 0.7616337537765503,
546
+ "eval_runtime": 96.1525,
547
+ "eval_samples_per_second": 2.08,
548
+ "eval_steps_per_second": 0.52,
549
+ "step": 36
550
+ },
551
+ {
552
+ "epoch": 1.184,
553
+ "grad_norm": 0.7386952203362822,
554
+ "learning_rate": 2e-05,
555
+ "loss": 0.7943,
556
+ "step": 37
557
+ },
558
+ {
559
+ "epoch": 1.184,
560
+ "eval_loss": 0.759408712387085,
561
+ "eval_runtime": 96.2772,
562
+ "eval_samples_per_second": 2.077,
563
+ "eval_steps_per_second": 0.519,
564
+ "step": 37
565
+ },
566
+ {
567
+ "epoch": 1.216,
568
+ "grad_norm": 0.6688305832985106,
569
+ "learning_rate": 2e-05,
570
+ "loss": 0.8433,
571
+ "step": 38
572
+ },
573
+ {
574
+ "epoch": 1.216,
575
+ "eval_loss": 0.7577520608901978,
576
+ "eval_runtime": 95.7726,
577
+ "eval_samples_per_second": 2.088,
578
+ "eval_steps_per_second": 0.522,
579
+ "step": 38
580
+ },
581
+ {
582
+ "epoch": 1.248,
583
+ "grad_norm": 0.6861808214947546,
584
+ "learning_rate": 2e-05,
585
+ "loss": 0.8132,
586
+ "step": 39
587
+ },
588
+ {
589
+ "epoch": 1.248,
590
+ "eval_loss": 0.7565059065818787,
591
+ "eval_runtime": 96.1577,
592
+ "eval_samples_per_second": 2.08,
593
+ "eval_steps_per_second": 0.52,
594
+ "step": 39
595
+ },
596
+ {
597
+ "epoch": 1.28,
598
+ "grad_norm": 0.7450886292190618,
599
+ "learning_rate": 2e-05,
600
+ "loss": 0.9067,
601
+ "step": 40
602
+ },
603
+ {
604
+ "epoch": 1.28,
605
+ "eval_loss": 0.7562046647071838,
606
+ "eval_runtime": 95.9983,
607
+ "eval_samples_per_second": 2.083,
608
+ "eval_steps_per_second": 0.521,
609
+ "step": 40
610
+ },
611
+ {
612
+ "epoch": 1.312,
613
+ "grad_norm": 0.7508586498301053,
614
+ "learning_rate": 2e-05,
615
+ "loss": 0.8642,
616
+ "step": 41
617
+ },
618
+ {
619
+ "epoch": 1.312,
620
+ "eval_loss": 0.755351722240448,
621
+ "eval_runtime": 96.6244,
622
+ "eval_samples_per_second": 2.07,
623
+ "eval_steps_per_second": 0.517,
624
+ "step": 41
625
+ },
626
+ {
627
+ "epoch": 1.3439999999999999,
628
+ "grad_norm": 0.7717273184776977,
629
+ "learning_rate": 2e-05,
630
+ "loss": 0.9406,
631
+ "step": 42
632
+ },
633
+ {
634
+ "epoch": 1.3439999999999999,
635
+ "eval_loss": 0.753773033618927,
636
+ "eval_runtime": 100.8127,
637
+ "eval_samples_per_second": 1.984,
638
+ "eval_steps_per_second": 0.496,
639
+ "step": 42
640
+ },
641
+ {
642
+ "epoch": 1.376,
643
+ "grad_norm": 0.7980115302909253,
644
+ "learning_rate": 2e-05,
645
+ "loss": 0.7732,
646
+ "step": 43
647
+ },
648
+ {
649
+ "epoch": 1.376,
650
+ "eval_loss": 0.7511720061302185,
651
+ "eval_runtime": 97.4372,
652
+ "eval_samples_per_second": 2.053,
653
+ "eval_steps_per_second": 0.513,
654
+ "step": 43
655
+ },
656
+ {
657
+ "epoch": 1.408,
658
+ "grad_norm": 0.794554904521861,
659
+ "learning_rate": 2e-05,
660
+ "loss": 0.8962,
661
+ "step": 44
662
+ },
663
+ {
664
+ "epoch": 1.408,
665
+ "eval_loss": 0.7484354376792908,
666
+ "eval_runtime": 96.7621,
667
+ "eval_samples_per_second": 2.067,
668
+ "eval_steps_per_second": 0.517,
669
+ "step": 44
670
+ },
671
+ {
672
+ "epoch": 1.44,
673
+ "grad_norm": 0.7964935137573818,
674
+ "learning_rate": 2e-05,
675
+ "loss": 0.7725,
676
+ "step": 45
677
+ },
678
+ {
679
+ "epoch": 1.44,
680
+ "eval_loss": 0.7454251050949097,
681
+ "eval_runtime": 96.5292,
682
+ "eval_samples_per_second": 2.072,
683
+ "eval_steps_per_second": 0.518,
684
+ "step": 45
685
+ },
686
+ {
687
+ "epoch": 1.472,
688
+ "grad_norm": 0.7477437094752549,
689
+ "learning_rate": 2e-05,
690
+ "loss": 0.8238,
691
+ "step": 46
692
+ },
693
+ {
694
+ "epoch": 1.472,
695
+ "eval_loss": 0.7427694201469421,
696
+ "eval_runtime": 96.4788,
697
+ "eval_samples_per_second": 2.073,
698
+ "eval_steps_per_second": 0.518,
699
+ "step": 46
700
+ },
701
+ {
702
+ "epoch": 1.504,
703
+ "grad_norm": 0.7443339980176984,
704
+ "learning_rate": 2e-05,
705
+ "loss": 0.8273,
706
+ "step": 47
707
+ },
708
+ {
709
+ "epoch": 1.504,
710
+ "eval_loss": 0.7407447099685669,
711
+ "eval_runtime": 96.5686,
712
+ "eval_samples_per_second": 2.071,
713
+ "eval_steps_per_second": 0.518,
714
+ "step": 47
715
+ },
716
+ {
717
+ "epoch": 1.536,
718
+ "grad_norm": 0.7901404920428264,
719
+ "learning_rate": 2e-05,
720
+ "loss": 0.7974,
721
+ "step": 48
722
+ },
723
+ {
724
+ "epoch": 1.536,
725
+ "eval_loss": 0.7381842136383057,
726
+ "eval_runtime": 96.6071,
727
+ "eval_samples_per_second": 2.07,
728
+ "eval_steps_per_second": 0.518,
729
+ "step": 48
730
+ },
731
+ {
732
+ "epoch": 1.568,
733
+ "grad_norm": 0.8677109521747711,
734
+ "learning_rate": 2e-05,
735
+ "loss": 0.8011,
736
+ "step": 49
737
+ },
738
+ {
739
+ "epoch": 1.568,
740
+ "eval_loss": 0.73555588722229,
741
+ "eval_runtime": 96.4189,
742
+ "eval_samples_per_second": 2.074,
743
+ "eval_steps_per_second": 0.519,
744
+ "step": 49
745
+ },
746
+ {
747
+ "epoch": 1.6,
748
+ "grad_norm": 0.8170436579363425,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.7762,
751
+ "step": 50
752
+ },
753
+ {
754
+ "epoch": 1.6,
755
+ "eval_loss": 0.7331439256668091,
756
+ "eval_runtime": 100.5875,
757
+ "eval_samples_per_second": 1.988,
758
+ "eval_steps_per_second": 0.497,
759
+ "step": 50
760
+ },
761
+ {
762
+ "epoch": 1.6320000000000001,
763
+ "grad_norm": 0.8190539924095326,
764
+ "learning_rate": 2e-05,
765
+ "loss": 0.7469,
766
+ "step": 51
767
+ },
768
+ {
769
+ "epoch": 1.6320000000000001,
770
+ "eval_loss": 0.7306647300720215,
771
+ "eval_runtime": 101.1429,
772
+ "eval_samples_per_second": 1.977,
773
+ "eval_steps_per_second": 0.494,
774
+ "step": 51
775
+ },
776
+ {
777
+ "epoch": 1.6640000000000001,
778
+ "grad_norm": 0.8044932603192197,
779
+ "learning_rate": 2e-05,
780
+ "loss": 0.8052,
781
+ "step": 52
782
+ },
783
+ {
784
+ "epoch": 1.6640000000000001,
785
+ "eval_loss": 0.7287429571151733,
786
+ "eval_runtime": 97.25,
787
+ "eval_samples_per_second": 2.057,
788
+ "eval_steps_per_second": 0.514,
789
+ "step": 52
790
+ },
791
+ {
792
+ "epoch": 1.696,
793
+ "grad_norm": 0.7811170846407103,
794
+ "learning_rate": 2e-05,
795
+ "loss": 0.755,
796
+ "step": 53
797
+ },
798
+ {
799
+ "epoch": 1.696,
800
+ "eval_loss": 0.7264651656150818,
801
+ "eval_runtime": 97.67,
802
+ "eval_samples_per_second": 2.048,
803
+ "eval_steps_per_second": 0.512,
804
+ "step": 53
805
+ },
806
+ {
807
+ "epoch": 1.728,
808
+ "grad_norm": 0.808405093976468,
809
+ "learning_rate": 2e-05,
810
+ "loss": 0.7838,
811
+ "step": 54
812
+ },
813
+ {
814
+ "epoch": 1.728,
815
+ "eval_loss": 0.7242828607559204,
816
+ "eval_runtime": 101.2008,
817
+ "eval_samples_per_second": 1.976,
818
+ "eval_steps_per_second": 0.494,
819
+ "step": 54
820
+ },
821
+ {
822
+ "epoch": 1.76,
823
+ "grad_norm": 0.8172106270954758,
824
+ "learning_rate": 2e-05,
825
+ "loss": 0.7123,
826
+ "step": 55
827
+ },
828
+ {
829
+ "epoch": 1.76,
830
+ "eval_loss": 0.7217574119567871,
831
+ "eval_runtime": 99.6145,
832
+ "eval_samples_per_second": 2.008,
833
+ "eval_steps_per_second": 0.502,
834
+ "step": 55
835
+ },
836
+ {
837
+ "epoch": 1.792,
838
+ "grad_norm": 0.83212530473105,
839
+ "learning_rate": 2e-05,
840
+ "loss": 0.8141,
841
+ "step": 56
842
+ },
843
+ {
844
+ "epoch": 1.792,
845
+ "eval_loss": 0.7192932367324829,
846
+ "eval_runtime": 97.1377,
847
+ "eval_samples_per_second": 2.059,
848
+ "eval_steps_per_second": 0.515,
849
+ "step": 56
850
+ },
851
+ {
852
+ "epoch": 1.8239999999999998,
853
+ "grad_norm": 0.8632612959683078,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.8005,
856
+ "step": 57
857
+ },
858
+ {
859
+ "epoch": 1.8239999999999998,
860
+ "eval_loss": 0.717003345489502,
861
+ "eval_runtime": 97.2871,
862
+ "eval_samples_per_second": 2.056,
863
+ "eval_steps_per_second": 0.514,
864
+ "step": 57
865
+ },
866
+ {
867
+ "epoch": 1.8559999999999999,
868
+ "grad_norm": 0.8362081570841255,
869
+ "learning_rate": 2e-05,
870
+ "loss": 0.8254,
871
+ "step": 58
872
+ },
873
+ {
874
+ "epoch": 1.8559999999999999,
875
+ "eval_loss": 0.715446949005127,
876
+ "eval_runtime": 97.5751,
877
+ "eval_samples_per_second": 2.05,
878
+ "eval_steps_per_second": 0.512,
879
+ "step": 58
880
+ },
881
+ {
882
+ "epoch": 1.888,
883
+ "grad_norm": 0.8862779841020042,
884
+ "learning_rate": 2e-05,
885
+ "loss": 0.7949,
886
+ "step": 59
887
+ },
888
+ {
889
+ "epoch": 1.888,
890
+ "eval_loss": 0.7145370244979858,
891
+ "eval_runtime": 97.2406,
892
+ "eval_samples_per_second": 2.057,
893
+ "eval_steps_per_second": 0.514,
894
+ "step": 59
895
+ },
896
+ {
897
+ "epoch": 1.92,
898
+ "grad_norm": 0.875656256488838,
899
+ "learning_rate": 2e-05,
900
+ "loss": 0.8277,
901
+ "step": 60
902
+ },
903
+ {
904
+ "epoch": 1.92,
905
+ "eval_loss": 0.7140547037124634,
906
+ "eval_runtime": 97.1485,
907
+ "eval_samples_per_second": 2.059,
908
+ "eval_steps_per_second": 0.515,
909
+ "step": 60
910
+ },
911
+ {
912
+ "epoch": 1.952,
913
+ "grad_norm": 0.8850690645543244,
914
+ "learning_rate": 2e-05,
915
+ "loss": 0.8117,
916
+ "step": 61
917
+ },
918
+ {
919
+ "epoch": 1.952,
920
+ "eval_loss": 0.7128701210021973,
921
+ "eval_runtime": 97.8906,
922
+ "eval_samples_per_second": 2.043,
923
+ "eval_steps_per_second": 0.511,
924
+ "step": 61
925
+ },
926
+ {
927
+ "epoch": 1.984,
928
+ "grad_norm": 0.8961641824408927,
929
+ "learning_rate": 2e-05,
930
+ "loss": 0.704,
931
+ "step": 62
932
+ },
933
+ {
934
+ "epoch": 1.984,
935
+ "eval_loss": 0.7107064127922058,
936
+ "eval_runtime": 102.2163,
937
+ "eval_samples_per_second": 1.957,
938
+ "eval_steps_per_second": 0.489,
939
+ "step": 62
940
+ },
941
+ {
942
+ "epoch": 2.016,
943
+ "grad_norm": 0.8602247372004996,
944
+ "learning_rate": 2e-05,
945
+ "loss": 0.8016,
946
+ "step": 63
947
+ },
948
+ {
949
+ "epoch": 2.016,
950
+ "eval_loss": 0.7091581225395203,
951
+ "eval_runtime": 98.2114,
952
+ "eval_samples_per_second": 2.036,
953
+ "eval_steps_per_second": 0.509,
954
+ "step": 63
955
+ },
956
+ {
957
+ "epoch": 2.048,
958
+ "grad_norm": 0.7881703384753784,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.7912,
961
+ "step": 64
962
+ },
963
+ {
964
+ "epoch": 2.048,
965
+ "eval_loss": 0.7081906199455261,
966
+ "eval_runtime": 98.9403,
967
+ "eval_samples_per_second": 2.021,
968
+ "eval_steps_per_second": 0.505,
969
+ "step": 64
970
+ },
971
+ {
972
+ "epoch": 2.08,
973
+ "grad_norm": 0.8436680506716614,
974
+ "learning_rate": 2e-05,
975
+ "loss": 0.6965,
976
+ "step": 65
977
+ },
978
+ {
979
+ "epoch": 2.08,
980
+ "eval_loss": 0.7070262432098389,
981
+ "eval_runtime": 97.7451,
982
+ "eval_samples_per_second": 2.046,
983
+ "eval_steps_per_second": 0.512,
984
+ "step": 65
985
+ },
986
+ {
987
+ "epoch": 2.112,
988
+ "grad_norm": 0.8694446846234115,
989
+ "learning_rate": 2e-05,
990
+ "loss": 0.7015,
991
+ "step": 66
992
+ },
993
+ {
994
+ "epoch": 2.112,
995
+ "eval_loss": 0.7055197358131409,
996
+ "eval_runtime": 97.994,
997
+ "eval_samples_per_second": 2.041,
998
+ "eval_steps_per_second": 0.51,
999
+ "step": 66
1000
+ },
1001
+ {
1002
+ "epoch": 2.144,
1003
+ "grad_norm": 0.9518475022730614,
1004
+ "learning_rate": 2e-05,
1005
+ "loss": 0.6952,
1006
+ "step": 67
1007
+ },
1008
+ {
1009
+ "epoch": 2.144,
1010
+ "eval_loss": 0.7035844326019287,
1011
+ "eval_runtime": 98.0296,
1012
+ "eval_samples_per_second": 2.04,
1013
+ "eval_steps_per_second": 0.51,
1014
+ "step": 67
1015
+ },
1016
+ {
1017
+ "epoch": 2.176,
1018
+ "grad_norm": 0.8662066024104106,
1019
+ "learning_rate": 2e-05,
1020
+ "loss": 0.7731,
1021
+ "step": 68
1022
+ },
1023
+ {
1024
+ "epoch": 2.176,
1025
+ "eval_loss": 0.7019283771514893,
1026
+ "eval_runtime": 100.0982,
1027
+ "eval_samples_per_second": 1.998,
1028
+ "eval_steps_per_second": 0.5,
1029
+ "step": 68
1030
+ },
1031
+ {
1032
+ "epoch": 2.208,
1033
+ "grad_norm": 0.9574631942368209,
1034
+ "learning_rate": 2e-05,
1035
+ "loss": 0.7572,
1036
+ "step": 69
1037
+ },
1038
+ {
1039
+ "epoch": 2.208,
1040
+ "eval_loss": 0.7011401653289795,
1041
+ "eval_runtime": 101.9267,
1042
+ "eval_samples_per_second": 1.962,
1043
+ "eval_steps_per_second": 0.491,
1044
+ "step": 69
1045
+ },
1046
+ {
1047
+ "epoch": 2.24,
1048
+ "grad_norm": 0.9477542521472675,
1049
+ "learning_rate": 2e-05,
1050
+ "loss": 0.7393,
1051
+ "step": 70
1052
+ },
1053
+ {
1054
+ "epoch": 2.24,
1055
+ "eval_loss": 0.7006180286407471,
1056
+ "eval_runtime": 101.9672,
1057
+ "eval_samples_per_second": 1.961,
1058
+ "eval_steps_per_second": 0.49,
1059
+ "step": 70
1060
+ },
1061
+ {
1062
+ "epoch": 2.2720000000000002,
1063
+ "grad_norm": 0.9612956116350272,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.7175,
1066
+ "step": 71
1067
+ },
1068
+ {
1069
+ "epoch": 2.2720000000000002,
1070
+ "eval_loss": 0.7002539038658142,
1071
+ "eval_runtime": 101.8755,
1072
+ "eval_samples_per_second": 1.963,
1073
+ "eval_steps_per_second": 0.491,
1074
+ "step": 71
1075
+ },
1076
+ {
1077
+ "epoch": 2.304,
1078
+ "grad_norm": 0.9934844303955727,
1079
+ "learning_rate": 2e-05,
1080
+ "loss": 0.791,
1081
+ "step": 72
1082
+ },
1083
+ {
1084
+ "epoch": 2.304,
1085
+ "eval_loss": 0.6997203230857849,
1086
+ "eval_runtime": 97.9926,
1087
+ "eval_samples_per_second": 2.041,
1088
+ "eval_steps_per_second": 0.51,
1089
+ "step": 72
1090
+ },
1091
+ {
1092
+ "epoch": 2.336,
1093
+ "grad_norm": 1.0540430431227044,
1094
+ "learning_rate": 2e-05,
1095
+ "loss": 0.7542,
1096
+ "step": 73
1097
+ },
1098
+ {
1099
+ "epoch": 2.336,
1100
+ "eval_loss": 0.6988361477851868,
1101
+ "eval_runtime": 100.3704,
1102
+ "eval_samples_per_second": 1.993,
1103
+ "eval_steps_per_second": 0.498,
1104
+ "step": 73
1105
+ },
1106
+ {
1107
+ "epoch": 2.368,
1108
+ "grad_norm": 1.0249397957961794,
1109
+ "learning_rate": 2e-05,
1110
+ "loss": 0.8084,
1111
+ "step": 74
1112
+ },
1113
+ {
1114
+ "epoch": 2.368,
1115
+ "eval_loss": 0.6980065703392029,
1116
+ "eval_runtime": 101.8958,
1117
+ "eval_samples_per_second": 1.963,
1118
+ "eval_steps_per_second": 0.491,
1119
+ "step": 74
1120
+ },
1121
+ {
1122
+ "epoch": 2.4,
1123
+ "grad_norm": 1.0445498365690145,
1124
+ "learning_rate": 2e-05,
1125
+ "loss": 0.7964,
1126
+ "step": 75
1127
+ },
1128
+ {
1129
+ "epoch": 2.4,
1130
+ "eval_loss": 0.6971798539161682,
1131
+ "eval_runtime": 98.1624,
1132
+ "eval_samples_per_second": 2.037,
1133
+ "eval_steps_per_second": 0.509,
1134
+ "step": 75
1135
+ },
1136
+ {
1137
+ "epoch": 2.432,
1138
+ "grad_norm": 0.9685893079320761,
1139
+ "learning_rate": 2e-05,
1140
+ "loss": 0.8047,
1141
+ "step": 76
1142
+ },
1143
+ {
1144
+ "epoch": 2.432,
1145
+ "eval_loss": 0.696861743927002,
1146
+ "eval_runtime": 98.6404,
1147
+ "eval_samples_per_second": 2.028,
1148
+ "eval_steps_per_second": 0.507,
1149
+ "step": 76
1150
+ },
1151
+ {
1152
+ "epoch": 2.464,
1153
+ "grad_norm": 0.9753091933204456,
1154
+ "learning_rate": 2e-05,
1155
+ "loss": 0.684,
1156
+ "step": 77
1157
+ },
1158
+ {
1159
+ "epoch": 2.464,
1160
+ "eval_loss": 0.6957904100418091,
1161
+ "eval_runtime": 98.8766,
1162
+ "eval_samples_per_second": 2.023,
1163
+ "eval_steps_per_second": 0.506,
1164
+ "step": 77
1165
+ },
1166
+ {
1167
+ "epoch": 2.496,
1168
+ "grad_norm": 0.9389149478503764,
1169
+ "learning_rate": 2e-05,
1170
+ "loss": 0.7434,
1171
+ "step": 78
1172
+ },
1173
+ {
1174
+ "epoch": 2.496,
1175
+ "eval_loss": 0.6943306922912598,
1176
+ "eval_runtime": 98.5751,
1177
+ "eval_samples_per_second": 2.029,
1178
+ "eval_steps_per_second": 0.507,
1179
+ "step": 78
1180
+ },
1181
+ {
1182
+ "epoch": 2.528,
1183
+ "grad_norm": 1.0675154845211299,
1184
+ "learning_rate": 2e-05,
1185
+ "loss": 0.7208,
1186
+ "step": 79
1187
+ },
1188
+ {
1189
+ "epoch": 2.528,
1190
+ "eval_loss": 0.6920651197433472,
1191
+ "eval_runtime": 99.0851,
1192
+ "eval_samples_per_second": 2.018,
1193
+ "eval_steps_per_second": 0.505,
1194
+ "step": 79
1195
+ },
1196
+ {
1197
+ "epoch": 2.56,
1198
+ "grad_norm": 0.9937936593307737,
1199
+ "learning_rate": 2e-05,
1200
+ "loss": 0.6948,
1201
+ "step": 80
1202
+ },
1203
+ {
1204
+ "epoch": 2.56,
1205
+ "eval_loss": 0.6899142265319824,
1206
+ "eval_runtime": 98.7974,
1207
+ "eval_samples_per_second": 2.024,
1208
+ "eval_steps_per_second": 0.506,
1209
+ "step": 80
1210
+ },
1211
+ {
1212
+ "epoch": 2.592,
1213
+ "grad_norm": 0.9650832276698476,
1214
+ "learning_rate": 2e-05,
1215
+ "loss": 0.7666,
1216
+ "step": 81
1217
+ },
1218
+ {
1219
+ "epoch": 2.592,
1220
+ "eval_loss": 0.6886695623397827,
1221
+ "eval_runtime": 98.6813,
1222
+ "eval_samples_per_second": 2.027,
1223
+ "eval_steps_per_second": 0.507,
1224
+ "step": 81
1225
+ },
1226
+ {
1227
+ "epoch": 2.624,
1228
+ "grad_norm": 0.9961610958296112,
1229
+ "learning_rate": 2e-05,
1230
+ "loss": 0.7741,
1231
+ "step": 82
1232
+ },
1233
+ {
1234
+ "epoch": 2.624,
1235
+ "eval_loss": 0.687745213508606,
1236
+ "eval_runtime": 98.624,
1237
+ "eval_samples_per_second": 2.028,
1238
+ "eval_steps_per_second": 0.507,
1239
+ "step": 82
1240
+ },
1241
+ {
1242
+ "epoch": 2.656,
1243
+ "grad_norm": 1.0261499699526089,
1244
+ "learning_rate": 2e-05,
1245
+ "loss": 0.7747,
1246
+ "step": 83
1247
+ },
1248
+ {
1249
+ "epoch": 2.656,
1250
+ "eval_loss": 0.6869972944259644,
1251
+ "eval_runtime": 98.9604,
1252
+ "eval_samples_per_second": 2.021,
1253
+ "eval_steps_per_second": 0.505,
1254
+ "step": 83
1255
+ },
1256
+ {
1257
+ "epoch": 2.6879999999999997,
1258
+ "grad_norm": 1.025059237745532,
1259
+ "learning_rate": 2e-05,
1260
+ "loss": 0.7526,
1261
+ "step": 84
1262
+ },
1263
+ {
1264
+ "epoch": 2.6879999999999997,
1265
+ "eval_loss": 0.6862147450447083,
1266
+ "eval_runtime": 98.4387,
1267
+ "eval_samples_per_second": 2.032,
1268
+ "eval_steps_per_second": 0.508,
1269
+ "step": 84
1270
+ },
1271
+ {
1272
+ "epoch": 2.7199999999999998,
1273
+ "grad_norm": 1.1383626266013125,
1274
+ "learning_rate": 2e-05,
1275
+ "loss": 0.683,
1276
+ "step": 85
1277
+ },
1278
+ {
1279
+ "epoch": 2.7199999999999998,
1280
+ "eval_loss": 0.6845572590827942,
1281
+ "eval_runtime": 98.4979,
1282
+ "eval_samples_per_second": 2.03,
1283
+ "eval_steps_per_second": 0.508,
1284
+ "step": 85
1285
+ },
1286
+ {
1287
+ "epoch": 2.752,
1288
+ "grad_norm": 1.0427739679421295,
1289
+ "learning_rate": 2e-05,
1290
+ "loss": 0.7362,
1291
+ "step": 86
1292
+ },
1293
+ {
1294
+ "epoch": 2.752,
1295
+ "eval_loss": 0.683280348777771,
1296
+ "eval_runtime": 103.6707,
1297
+ "eval_samples_per_second": 1.929,
1298
+ "eval_steps_per_second": 0.482,
1299
+ "step": 86
1300
+ },
1301
+ {
1302
+ "epoch": 2.784,
1303
+ "grad_norm": 1.1280129141879938,
1304
+ "learning_rate": 2e-05,
1305
+ "loss": 0.7743,
1306
+ "step": 87
1307
+ },
1308
+ {
1309
+ "epoch": 2.784,
1310
+ "eval_loss": 0.6824235320091248,
1311
+ "eval_runtime": 99.2995,
1312
+ "eval_samples_per_second": 2.014,
1313
+ "eval_steps_per_second": 0.504,
1314
+ "step": 87
1315
+ },
1316
+ {
1317
+ "epoch": 2.816,
1318
+ "grad_norm": 1.0017715497784696,
1319
+ "learning_rate": 2e-05,
1320
+ "loss": 0.7164,
1321
+ "step": 88
1322
+ },
1323
+ {
1324
+ "epoch": 2.816,
1325
+ "eval_loss": 0.6819013357162476,
1326
+ "eval_runtime": 99.5206,
1327
+ "eval_samples_per_second": 2.01,
1328
+ "eval_steps_per_second": 0.502,
1329
+ "step": 88
1330
+ },
1331
+ {
1332
+ "epoch": 2.848,
1333
+ "grad_norm": 1.0769673642284994,
1334
+ "learning_rate": 2e-05,
1335
+ "loss": 0.7013,
1336
+ "step": 89
1337
+ },
1338
+ {
1339
+ "epoch": 2.848,
1340
+ "eval_loss": 0.6820746064186096,
1341
+ "eval_runtime": 96.5197,
1342
+ "eval_samples_per_second": 2.072,
1343
+ "eval_steps_per_second": 0.518,
1344
+ "step": 89
1345
+ },
1346
+ {
1347
+ "epoch": 2.88,
1348
+ "grad_norm": 1.0389167281844591,
1349
+ "learning_rate": 2e-05,
1350
+ "loss": 0.6805,
1351
+ "step": 90
1352
+ },
1353
+ {
1354
+ "epoch": 2.88,
1355
+ "eval_loss": 0.6826525926589966,
1356
+ "eval_runtime": 96.0942,
1357
+ "eval_samples_per_second": 2.081,
1358
+ "eval_steps_per_second": 0.52,
1359
+ "step": 90
1360
+ },
1361
+ {
1362
+ "epoch": 2.912,
1363
+ "grad_norm": 0.9705743838620626,
1364
+ "learning_rate": 2e-05,
1365
+ "loss": 0.7681,
1366
+ "step": 91
1367
+ },
1368
+ {
1369
+ "epoch": 2.912,
1370
+ "eval_loss": 0.6836435198783875,
1371
+ "eval_runtime": 96.2441,
1372
+ "eval_samples_per_second": 2.078,
1373
+ "eval_steps_per_second": 0.52,
1374
+ "step": 91
1375
+ },
1376
+ {
1377
+ "epoch": 2.944,
1378
+ "grad_norm": 1.037823791993831,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 0.7532,
1381
+ "step": 92
1382
+ },
1383
+ {
1384
+ "epoch": 2.944,
1385
+ "eval_loss": 0.6845746040344238,
1386
+ "eval_runtime": 96.2394,
1387
+ "eval_samples_per_second": 2.078,
1388
+ "eval_steps_per_second": 0.52,
1389
+ "step": 92
1390
+ },
1391
+ {
1392
+ "epoch": 2.976,
1393
+ "grad_norm": 1.1323835942146157,
1394
+ "learning_rate": 2e-05,
1395
+ "loss": 0.7171,
1396
+ "step": 93
1397
+ },
1398
+ {
1399
+ "epoch": 2.976,
1400
+ "eval_loss": 0.684663712978363,
1401
+ "eval_runtime": 96.23,
1402
+ "eval_samples_per_second": 2.078,
1403
+ "eval_steps_per_second": 0.52,
1404
+ "step": 93
1405
+ },
1406
+ {
1407
+ "epoch": 3.008,
1408
+ "grad_norm": 1.1957864756602699,
1409
+ "learning_rate": 2e-05,
1410
+ "loss": 0.7166,
1411
+ "step": 94
1412
+ },
1413
+ {
1414
+ "epoch": 3.008,
1415
+ "eval_loss": 0.6830846667289734,
1416
+ "eval_runtime": 96.6549,
1417
+ "eval_samples_per_second": 2.069,
1418
+ "eval_steps_per_second": 0.517,
1419
+ "step": 94
1420
+ },
1421
+ {
1422
+ "epoch": 3.04,
1423
+ "grad_norm": 1.1077357794232636,
1424
+ "learning_rate": 2e-05,
1425
+ "loss": 0.6667,
1426
+ "step": 95
1427
+ },
1428
+ {
1429
+ "epoch": 3.04,
1430
+ "eval_loss": 0.6810076832771301,
1431
+ "eval_runtime": 96.3239,
1432
+ "eval_samples_per_second": 2.076,
1433
+ "eval_steps_per_second": 0.519,
1434
+ "step": 95
1435
+ },
1436
+ {
1437
+ "epoch": 3.072,
1438
+ "grad_norm": 1.1851219157184936,
1439
+ "learning_rate": 2e-05,
1440
+ "loss": 0.7115,
1441
+ "step": 96
1442
+ },
1443
+ {
1444
+ "epoch": 3.072,
1445
+ "eval_loss": 0.6796395778656006,
1446
+ "eval_runtime": 96.9109,
1447
+ "eval_samples_per_second": 2.064,
1448
+ "eval_steps_per_second": 0.516,
1449
+ "step": 96
1450
+ },
1451
+ {
1452
+ "epoch": 3.104,
1453
+ "grad_norm": 1.0812671042616444,
1454
+ "learning_rate": 2e-05,
1455
+ "loss": 0.7333,
1456
+ "step": 97
1457
+ },
1458
+ {
1459
+ "epoch": 3.104,
1460
+ "eval_loss": 0.6794567108154297,
1461
+ "eval_runtime": 96.7403,
1462
+ "eval_samples_per_second": 2.067,
1463
+ "eval_steps_per_second": 0.517,
1464
+ "step": 97
1465
+ },
1466
+ {
1467
+ "epoch": 3.136,
1468
+ "grad_norm": 1.130095597839828,
1469
+ "learning_rate": 2e-05,
1470
+ "loss": 0.6328,
1471
+ "step": 98
1472
+ },
1473
+ {
1474
+ "epoch": 3.136,
1475
+ "eval_loss": 0.6792007684707642,
1476
+ "eval_runtime": 96.8136,
1477
+ "eval_samples_per_second": 2.066,
1478
+ "eval_steps_per_second": 0.516,
1479
+ "step": 98
1480
+ },
1481
+ {
1482
+ "epoch": 3.168,
1483
+ "grad_norm": 1.16102100344116,
1484
+ "learning_rate": 2e-05,
1485
+ "loss": 0.6625,
1486
+ "step": 99
1487
+ },
1488
+ {
1489
+ "epoch": 3.168,
1490
+ "eval_loss": 0.6789132952690125,
1491
+ "eval_runtime": 96.6982,
1492
+ "eval_samples_per_second": 2.068,
1493
+ "eval_steps_per_second": 0.517,
1494
+ "step": 99
1495
+ },
1496
+ {
1497
+ "epoch": 3.2,
1498
+ "grad_norm": 1.226689811951201,
1499
+ "learning_rate": 2e-05,
1500
+ "loss": 0.7522,
1501
+ "step": 100
1502
+ },
1503
+ {
1504
+ "epoch": 3.2,
1505
+ "eval_loss": 0.6786602735519409,
1506
+ "eval_runtime": 96.6253,
1507
+ "eval_samples_per_second": 2.07,
1508
+ "eval_steps_per_second": 0.517,
1509
+ "step": 100
1510
+ },
1511
+ {
1512
+ "epoch": 3.232,
1513
+ "grad_norm": 1.1623462595850367,
1514
+ "learning_rate": 2e-05,
1515
+ "loss": 0.6755,
1516
+ "step": 101
1517
+ },
1518
+ {
1519
+ "epoch": 3.232,
1520
+ "eval_loss": 0.6791322827339172,
1521
+ "eval_runtime": 96.5222,
1522
+ "eval_samples_per_second": 2.072,
1523
+ "eval_steps_per_second": 0.518,
1524
+ "step": 101
1525
+ },
1526
+ {
1527
+ "epoch": 3.2640000000000002,
1528
+ "grad_norm": 1.16303930181089,
1529
+ "learning_rate": 2e-05,
1530
+ "loss": 0.6752,
1531
+ "step": 102
1532
+ },
1533
+ {
1534
+ "epoch": 3.2640000000000002,
1535
+ "eval_loss": 0.680637538433075,
1536
+ "eval_runtime": 96.8789,
1537
+ "eval_samples_per_second": 2.064,
1538
+ "eval_steps_per_second": 0.516,
1539
+ "step": 102
1540
+ },
1541
+ {
1542
+ "epoch": 3.296,
1543
+ "grad_norm": 1.166028046661615,
1544
+ "learning_rate": 2e-05,
1545
+ "loss": 0.6732,
1546
+ "step": 103
1547
+ },
1548
+ {
1549
+ "epoch": 3.296,
1550
+ "eval_loss": 0.6818951964378357,
1551
+ "eval_runtime": 96.7579,
1552
+ "eval_samples_per_second": 2.067,
1553
+ "eval_steps_per_second": 0.517,
1554
+ "step": 103
1555
+ },
1556
+ {
1557
+ "epoch": 3.328,
1558
+ "grad_norm": 1.2872370423601793,
1559
+ "learning_rate": 2e-05,
1560
+ "loss": 0.7713,
1561
+ "step": 104
1562
+ },
1563
+ {
1564
+ "epoch": 3.328,
1565
+ "eval_loss": 0.682328462600708,
1566
+ "eval_runtime": 98.3142,
1567
+ "eval_samples_per_second": 2.034,
1568
+ "eval_steps_per_second": 0.509,
1569
+ "step": 104
1570
+ },
1571
+ {
1572
+ "epoch": 3.36,
1573
+ "grad_norm": 1.1363822202896854,
1574
+ "learning_rate": 2e-05,
1575
+ "loss": 0.7429,
1576
+ "step": 105
1577
+ },
1578
+ {
1579
+ "epoch": 3.36,
1580
+ "eval_loss": 0.6817943453788757,
1581
+ "eval_runtime": 100.7507,
1582
+ "eval_samples_per_second": 1.985,
1583
+ "eval_steps_per_second": 0.496,
1584
+ "step": 105
1585
+ },
1586
+ {
1587
+ "epoch": 3.416,
1588
+ "grad_norm": 1.2711044658075554,
1589
+ "learning_rate": 2e-05,
1590
+ "loss": 0.7057,
1591
+ "step": 106
1592
+ },
1593
+ {
1594
+ "epoch": 3.416,
1595
+ "eval_loss": 0.6794378161430359,
1596
+ "eval_runtime": 100.4096,
1597
+ "eval_samples_per_second": 1.992,
1598
+ "eval_steps_per_second": 0.498,
1599
+ "step": 106
1600
+ },
1601
+ {
1602
+ "epoch": 3.448,
1603
+ "grad_norm": 1.3212295597772596,
1604
+ "learning_rate": 2e-05,
1605
+ "loss": 0.6982,
1606
+ "step": 107
1607
+ },
1608
+ {
1609
+ "epoch": 3.448,
1610
+ "eval_loss": 0.6767404079437256,
1611
+ "eval_runtime": 96.6386,
1612
+ "eval_samples_per_second": 2.07,
1613
+ "eval_steps_per_second": 0.517,
1614
+ "step": 107
1615
+ },
1616
+ {
1617
+ "epoch": 3.48,
1618
+ "grad_norm": 1.2420948881737728,
1619
+ "learning_rate": 2e-05,
1620
+ "loss": 0.7092,
1621
+ "step": 108
1622
+ },
1623
+ {
1624
+ "epoch": 3.48,
1625
+ "eval_loss": 0.6751566529273987,
1626
+ "eval_runtime": 95.1851,
1627
+ "eval_samples_per_second": 2.101,
1628
+ "eval_steps_per_second": 0.525,
1629
+ "step": 108
1630
+ },
1631
+ {
1632
+ "epoch": 3.512,
1633
+ "grad_norm": 1.2965352636029341,
1634
+ "learning_rate": 2e-05,
1635
+ "loss": 0.6715,
1636
+ "step": 109
1637
+ },
1638
+ {
1639
+ "epoch": 3.512,
1640
+ "eval_loss": 0.6750080585479736,
1641
+ "eval_runtime": 95.3479,
1642
+ "eval_samples_per_second": 2.098,
1643
+ "eval_steps_per_second": 0.524,
1644
+ "step": 109
1645
+ },
1646
+ {
1647
+ "epoch": 3.544,
1648
+ "grad_norm": 1.2789534479099607,
1649
+ "learning_rate": 2e-05,
1650
+ "loss": 0.6732,
1651
+ "step": 110
1652
+ },
1653
+ {
1654
+ "epoch": 3.544,
1655
+ "eval_loss": 0.6744334697723389,
1656
+ "eval_runtime": 95.3541,
1657
+ "eval_samples_per_second": 2.097,
1658
+ "eval_steps_per_second": 0.524,
1659
+ "step": 110
1660
+ },
1661
+ {
1662
+ "epoch": 3.576,
1663
+ "grad_norm": 1.3881035995379567,
1664
+ "learning_rate": 2e-05,
1665
+ "loss": 0.6777,
1666
+ "step": 111
1667
+ },
1668
+ {
1669
+ "epoch": 3.576,
1670
+ "eval_loss": 0.6730498671531677,
1671
+ "eval_runtime": 96.972,
1672
+ "eval_samples_per_second": 2.062,
1673
+ "eval_steps_per_second": 0.516,
1674
+ "step": 111
1675
+ },
1676
+ {
1677
+ "epoch": 3.608,
1678
+ "grad_norm": 1.2398078245019133,
1679
+ "learning_rate": 2e-05,
1680
+ "loss": 0.6314,
1681
+ "step": 112
1682
+ },
1683
+ {
1684
+ "epoch": 3.608,
1685
+ "eval_loss": 0.6725335717201233,
1686
+ "eval_runtime": 97.1794,
1687
+ "eval_samples_per_second": 2.058,
1688
+ "eval_steps_per_second": 0.515,
1689
+ "step": 112
1690
+ },
1691
+ {
1692
+ "epoch": 3.64,
1693
+ "grad_norm": 1.3383993031041075,
1694
+ "learning_rate": 2e-05,
1695
+ "loss": 0.6776,
1696
+ "step": 113
1697
+ },
1698
+ {
1699
+ "epoch": 3.64,
1700
+ "eval_loss": 0.6719880104064941,
1701
+ "eval_runtime": 97.2319,
1702
+ "eval_samples_per_second": 2.057,
1703
+ "eval_steps_per_second": 0.514,
1704
+ "step": 113
1705
+ },
1706
+ {
1707
+ "epoch": 3.672,
1708
+ "grad_norm": 1.289557205987285,
1709
+ "learning_rate": 2e-05,
1710
+ "loss": 0.7475,
1711
+ "step": 114
1712
+ },
1713
+ {
1714
+ "epoch": 3.672,
1715
+ "eval_loss": 0.6723533868789673,
1716
+ "eval_runtime": 97.3108,
1717
+ "eval_samples_per_second": 2.055,
1718
+ "eval_steps_per_second": 0.514,
1719
+ "step": 114
1720
+ },
1721
+ {
1722
+ "epoch": 3.7039999999999997,
1723
+ "grad_norm": 1.121644844950096,
1724
+ "learning_rate": 2e-05,
1725
+ "loss": 0.6813,
1726
+ "step": 115
1727
+ },
1728
+ {
1729
+ "epoch": 3.7039999999999997,
1730
+ "eval_loss": 0.673932671546936,
1731
+ "eval_runtime": 97.0919,
1732
+ "eval_samples_per_second": 2.06,
1733
+ "eval_steps_per_second": 0.515,
1734
+ "step": 115
1735
+ },
1736
+ {
1737
+ "epoch": 3.7359999999999998,
1738
+ "grad_norm": 1.5370551636574723,
1739
+ "learning_rate": 2e-05,
1740
+ "loss": 0.7036,
1741
+ "step": 116
1742
+ },
1743
+ {
1744
+ "epoch": 3.7359999999999998,
1745
+ "eval_loss": 0.6737978458404541,
1746
+ "eval_runtime": 97.0064,
1747
+ "eval_samples_per_second": 2.062,
1748
+ "eval_steps_per_second": 0.515,
1749
+ "step": 116
1750
+ },
1751
+ {
1752
+ "epoch": 3.768,
1753
+ "grad_norm": 1.3017720066449985,
1754
+ "learning_rate": 2e-05,
1755
+ "loss": 0.7048,
1756
+ "step": 117
1757
+ },
1758
+ {
1759
+ "epoch": 3.768,
1760
+ "eval_loss": 0.6731936931610107,
1761
+ "eval_runtime": 96.9134,
1762
+ "eval_samples_per_second": 2.064,
1763
+ "eval_steps_per_second": 0.516,
1764
+ "step": 117
1765
+ },
1766
+ {
1767
+ "epoch": 3.8,
1768
+ "grad_norm": 1.3976157986974596,
1769
+ "learning_rate": 2e-05,
1770
+ "loss": 0.6512,
1771
+ "step": 118
1772
+ },
1773
+ {
1774
+ "epoch": 3.8,
1775
+ "eval_loss": 0.6716210842132568,
1776
+ "eval_runtime": 97.4028,
1777
+ "eval_samples_per_second": 2.053,
1778
+ "eval_steps_per_second": 0.513,
1779
+ "step": 118
1780
+ },
1781
+ {
1782
+ "epoch": 3.832,
1783
+ "grad_norm": 1.3982632064891347,
1784
+ "learning_rate": 2e-05,
1785
+ "loss": 0.6481,
1786
+ "step": 119
1787
+ },
1788
+ {
1789
+ "epoch": 3.832,
1790
+ "eval_loss": 0.6690347194671631,
1791
+ "eval_runtime": 97.2096,
1792
+ "eval_samples_per_second": 2.057,
1793
+ "eval_steps_per_second": 0.514,
1794
+ "step": 119
1795
+ },
1796
+ {
1797
+ "epoch": 3.864,
1798
+ "grad_norm": 1.346077433712507,
1799
+ "learning_rate": 2e-05,
1800
+ "loss": 0.6005,
1801
+ "step": 120
1802
+ },
1803
+ {
1804
+ "epoch": 3.864,
1805
+ "eval_loss": 0.667186975479126,
1806
+ "eval_runtime": 97.326,
1807
+ "eval_samples_per_second": 2.055,
1808
+ "eval_steps_per_second": 0.514,
1809
+ "step": 120
1810
+ },
1811
+ {
1812
+ "epoch": 3.896,
1813
+ "grad_norm": 1.3142652448176726,
1814
+ "learning_rate": 2e-05,
1815
+ "loss": 0.6967,
1816
+ "step": 121
1817
+ },
1818
+ {
1819
+ "epoch": 3.896,
1820
+ "eval_loss": 0.6662881970405579,
1821
+ "eval_runtime": 101.7648,
1822
+ "eval_samples_per_second": 1.965,
1823
+ "eval_steps_per_second": 0.491,
1824
+ "step": 121
1825
+ },
1826
+ {
1827
+ "epoch": 3.928,
1828
+ "grad_norm": 1.3368669812290557,
1829
+ "learning_rate": 2e-05,
1830
+ "loss": 0.6954,
1831
+ "step": 122
1832
+ },
1833
+ {
1834
+ "epoch": 3.928,
1835
+ "eval_loss": 0.6659301519393921,
1836
+ "eval_runtime": 98.3123,
1837
+ "eval_samples_per_second": 2.034,
1838
+ "eval_steps_per_second": 0.509,
1839
+ "step": 122
1840
+ },
1841
+ {
1842
+ "epoch": 3.96,
1843
+ "grad_norm": 1.3992228513792793,
1844
+ "learning_rate": 2e-05,
1845
+ "loss": 0.6168,
1846
+ "step": 123
1847
+ },
1848
+ {
1849
+ "epoch": 3.96,
1850
+ "eval_loss": 0.6662861704826355,
1851
+ "eval_runtime": 98.5527,
1852
+ "eval_samples_per_second": 2.029,
1853
+ "eval_steps_per_second": 0.507,
1854
+ "step": 123
1855
+ },
1856
+ {
1857
+ "epoch": 3.992,
1858
+ "grad_norm": 1.403303492690172,
1859
+ "learning_rate": 2e-05,
1860
+ "loss": 0.6818,
1861
+ "step": 124
1862
+ },
1863
+ {
1864
+ "epoch": 3.992,
1865
+ "eval_loss": 0.666582465171814,
1866
+ "eval_runtime": 95.7576,
1867
+ "eval_samples_per_second": 2.089,
1868
+ "eval_steps_per_second": 0.522,
1869
+ "step": 124
1870
+ },
1871
+ {
1872
+ "epoch": 4.024,
1873
+ "grad_norm": 1.37383602466541,
1874
+ "learning_rate": 2e-05,
1875
+ "loss": 0.6539,
1876
+ "step": 125
1877
+ },
1878
+ {
1879
+ "epoch": 4.024,
1880
+ "eval_loss": 0.6666322350502014,
1881
+ "eval_runtime": 95.5774,
1882
+ "eval_samples_per_second": 2.093,
1883
+ "eval_steps_per_second": 0.523,
1884
+ "step": 125
1885
+ }
1886
+ ],
1887
+ "logging_steps": 1.0,
1888
+ "max_steps": 186,
1889
+ "num_input_tokens_seen": 0,
1890
+ "num_train_epochs": 6,
1891
+ "save_steps": 5,
1892
+ "stateful_callbacks": {
1893
+ "TrainerControl": {
1894
+ "args": {
1895
+ "should_epoch_stop": false,
1896
+ "should_evaluate": false,
1897
+ "should_log": false,
1898
+ "should_save": true,
1899
+ "should_training_stop": false
1900
+ },
1901
+ "attributes": {}
1902
+ }
1903
+ },
1904
+ "total_flos": 109139403341824.0,
1905
+ "train_batch_size": 4,
1906
+ "trial_name": null,
1907
+ "trial_params": null
1908
+ }
checkpoint-125/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c699d5bf141273a7d15c9e276f19e65cb368f8a4c2d8c5f4f59f908f45da37f8
3
+ size 8184
checkpoint-125/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
checkpoint-248/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-mistral-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-248/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "up_proj",
25
+ "q_proj",
26
+ "down_proj",
27
+ "gate_proj",
28
+ "v_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-248/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49c97dab65ef183af70a1f608e9dc84d43b597eb9c1c492ebcef92ad90f8c97f
3
+ size 44387440
checkpoint-248/global_step248/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5112d61ac28f472ff900463544d792bf539d41a7a8b812de1c9fc35e058742ba
3
+ size 663858
checkpoint-248/global_step248/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:509f1d7cae17905858e791ef842ad34a1c5e6964d2aaf9864979bb0194a2b63b
3
+ size 258789357
checkpoint-248/global_step248/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84310f26d2a29fe71b015662bad637a324c684bdb8b2df20afbc6b97908b23ee
3
+ size 663858
checkpoint-248/global_step248/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73e650d7aed3c21ca69b5bf51af900f3e992bbe3c33a8f508c1c57c4b062dd78
3
+ size 258789357
checkpoint-248/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step248
checkpoint-248/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f0523245ab98a0d9c42984e954d65bcd1896eb38a3c35ee40aa19fbabbdd5f6
3
+ size 14512
checkpoint-248/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:895ad4a53a5764a87f970c5c06b4939bf66b3929c542fd49692094eff34e4866
3
+ size 14512
checkpoint-248/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-248/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-248/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "legacy": true,
37
+ "model_max_length": 4096,
38
+ "pad_token": "<unk>",
39
+ "padding_side": "right",
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
checkpoint-248/trainer_state.json ADDED
@@ -0,0 +1,3753 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6666322350502014,
3
+ "best_model_checkpoint": "./checkpoints/llava-v1.6-mistral/checkpoint-125",
4
+ "epoch": 7.992,
5
+ "eval_steps": 1.0,
6
+ "global_step": 248,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.032,
13
+ "grad_norm": 1.3562940564009667,
14
+ "learning_rate": 0.0,
15
+ "loss": 1.2069,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.032,
20
+ "eval_loss": 1.189530849456787,
21
+ "eval_runtime": 100.6384,
22
+ "eval_samples_per_second": 1.987,
23
+ "eval_steps_per_second": 0.497,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.064,
28
+ "grad_norm": 1.3726335882966116,
29
+ "learning_rate": 7.737056144690831e-06,
30
+ "loss": 1.242,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.064,
35
+ "eval_loss": 1.189530849456787,
36
+ "eval_runtime": 95.3713,
37
+ "eval_samples_per_second": 2.097,
38
+ "eval_steps_per_second": 0.524,
39
+ "step": 2
40
+ },
41
+ {
42
+ "epoch": 0.096,
43
+ "grad_norm": 1.267071497789874,
44
+ "learning_rate": 1.2262943855309169e-05,
45
+ "loss": 1.1588,
46
+ "step": 3
47
+ },
48
+ {
49
+ "epoch": 0.096,
50
+ "eval_loss": 1.1675384044647217,
51
+ "eval_runtime": 99.4768,
52
+ "eval_samples_per_second": 2.011,
53
+ "eval_steps_per_second": 0.503,
54
+ "step": 3
55
+ },
56
+ {
57
+ "epoch": 0.128,
58
+ "grad_norm": 1.2066781722006759,
59
+ "learning_rate": 1.5474112289381662e-05,
60
+ "loss": 1.1196,
61
+ "step": 4
62
+ },
63
+ {
64
+ "epoch": 0.128,
65
+ "eval_loss": 1.1391011476516724,
66
+ "eval_runtime": 95.4777,
67
+ "eval_samples_per_second": 2.095,
68
+ "eval_steps_per_second": 0.524,
69
+ "step": 4
70
+ },
71
+ {
72
+ "epoch": 0.16,
73
+ "grad_norm": 1.2746210039866817,
74
+ "learning_rate": 1.7964888034078543e-05,
75
+ "loss": 1.1462,
76
+ "step": 5
77
+ },
78
+ {
79
+ "epoch": 0.16,
80
+ "eval_loss": 1.1023523807525635,
81
+ "eval_runtime": 95.4138,
82
+ "eval_samples_per_second": 2.096,
83
+ "eval_steps_per_second": 0.524,
84
+ "step": 5
85
+ },
86
+ {
87
+ "epoch": 0.192,
88
+ "grad_norm": 1.0552650848120237,
89
+ "learning_rate": 1.9999999999999998e-05,
90
+ "loss": 1.1147,
91
+ "step": 6
92
+ },
93
+ {
94
+ "epoch": 0.192,
95
+ "eval_loss": 1.063745379447937,
96
+ "eval_runtime": 97.6633,
97
+ "eval_samples_per_second": 2.048,
98
+ "eval_steps_per_second": 0.512,
99
+ "step": 6
100
+ },
101
+ {
102
+ "epoch": 0.224,
103
+ "grad_norm": 1.0779287740182022,
104
+ "learning_rate": 2e-05,
105
+ "loss": 1.1773,
106
+ "step": 7
107
+ },
108
+ {
109
+ "epoch": 0.224,
110
+ "eval_loss": 1.024451732635498,
111
+ "eval_runtime": 97.388,
112
+ "eval_samples_per_second": 2.054,
113
+ "eval_steps_per_second": 0.513,
114
+ "step": 7
115
+ },
116
+ {
117
+ "epoch": 0.256,
118
+ "grad_norm": 0.9918200495785524,
119
+ "learning_rate": 2e-05,
120
+ "loss": 1.0434,
121
+ "step": 8
122
+ },
123
+ {
124
+ "epoch": 0.256,
125
+ "eval_loss": 0.9906812906265259,
126
+ "eval_runtime": 97.2423,
127
+ "eval_samples_per_second": 2.057,
128
+ "eval_steps_per_second": 0.514,
129
+ "step": 8
130
+ },
131
+ {
132
+ "epoch": 0.288,
133
+ "grad_norm": 0.9119239308208719,
134
+ "learning_rate": 2e-05,
135
+ "loss": 1.0527,
136
+ "step": 9
137
+ },
138
+ {
139
+ "epoch": 0.288,
140
+ "eval_loss": 0.9626247882843018,
141
+ "eval_runtime": 97.2048,
142
+ "eval_samples_per_second": 2.058,
143
+ "eval_steps_per_second": 0.514,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 0.32,
148
+ "grad_norm": 0.7292073828818868,
149
+ "learning_rate": 2e-05,
150
+ "loss": 0.9801,
151
+ "step": 10
152
+ },
153
+ {
154
+ "epoch": 0.32,
155
+ "eval_loss": 0.9422003030776978,
156
+ "eval_runtime": 97.143,
157
+ "eval_samples_per_second": 2.059,
158
+ "eval_steps_per_second": 0.515,
159
+ "step": 10
160
+ },
161
+ {
162
+ "epoch": 0.352,
163
+ "grad_norm": 0.8195137858461904,
164
+ "learning_rate": 2e-05,
165
+ "loss": 1.0104,
166
+ "step": 11
167
+ },
168
+ {
169
+ "epoch": 0.352,
170
+ "eval_loss": 0.9264165759086609,
171
+ "eval_runtime": 97.2279,
172
+ "eval_samples_per_second": 2.057,
173
+ "eval_steps_per_second": 0.514,
174
+ "step": 11
175
+ },
176
+ {
177
+ "epoch": 0.384,
178
+ "grad_norm": 0.7060464565699565,
179
+ "learning_rate": 2e-05,
180
+ "loss": 0.9764,
181
+ "step": 12
182
+ },
183
+ {
184
+ "epoch": 0.384,
185
+ "eval_loss": 0.9138455986976624,
186
+ "eval_runtime": 97.0954,
187
+ "eval_samples_per_second": 2.06,
188
+ "eval_steps_per_second": 0.515,
189
+ "step": 12
190
+ },
191
+ {
192
+ "epoch": 0.416,
193
+ "grad_norm": 0.8207130544099034,
194
+ "learning_rate": 2e-05,
195
+ "loss": 1.0371,
196
+ "step": 13
197
+ },
198
+ {
199
+ "epoch": 0.416,
200
+ "eval_loss": 0.902658224105835,
201
+ "eval_runtime": 100.8924,
202
+ "eval_samples_per_second": 1.982,
203
+ "eval_steps_per_second": 0.496,
204
+ "step": 13
205
+ },
206
+ {
207
+ "epoch": 0.448,
208
+ "grad_norm": 0.7962544586919155,
209
+ "learning_rate": 2e-05,
210
+ "loss": 0.9455,
211
+ "step": 14
212
+ },
213
+ {
214
+ "epoch": 0.448,
215
+ "eval_loss": 0.8926536440849304,
216
+ "eval_runtime": 100.856,
217
+ "eval_samples_per_second": 1.983,
218
+ "eval_steps_per_second": 0.496,
219
+ "step": 14
220
+ },
221
+ {
222
+ "epoch": 0.48,
223
+ "grad_norm": 0.8246421268957655,
224
+ "learning_rate": 2e-05,
225
+ "loss": 0.9456,
226
+ "step": 15
227
+ },
228
+ {
229
+ "epoch": 0.48,
230
+ "eval_loss": 0.8823295831680298,
231
+ "eval_runtime": 97.0568,
232
+ "eval_samples_per_second": 2.061,
233
+ "eval_steps_per_second": 0.515,
234
+ "step": 15
235
+ },
236
+ {
237
+ "epoch": 0.512,
238
+ "grad_norm": 0.7040845257818263,
239
+ "learning_rate": 2e-05,
240
+ "loss": 0.9283,
241
+ "step": 16
242
+ },
243
+ {
244
+ "epoch": 0.512,
245
+ "eval_loss": 0.8721897602081299,
246
+ "eval_runtime": 98.318,
247
+ "eval_samples_per_second": 2.034,
248
+ "eval_steps_per_second": 0.509,
249
+ "step": 16
250
+ },
251
+ {
252
+ "epoch": 0.544,
253
+ "grad_norm": 0.7904707927869743,
254
+ "learning_rate": 2e-05,
255
+ "loss": 0.9786,
256
+ "step": 17
257
+ },
258
+ {
259
+ "epoch": 0.544,
260
+ "eval_loss": 0.861838698387146,
261
+ "eval_runtime": 101.4487,
262
+ "eval_samples_per_second": 1.971,
263
+ "eval_steps_per_second": 0.493,
264
+ "step": 17
265
+ },
266
+ {
267
+ "epoch": 0.576,
268
+ "grad_norm": 0.7605583546638608,
269
+ "learning_rate": 2e-05,
270
+ "loss": 0.9361,
271
+ "step": 18
272
+ },
273
+ {
274
+ "epoch": 0.576,
275
+ "eval_loss": 0.8519415259361267,
276
+ "eval_runtime": 98.2448,
277
+ "eval_samples_per_second": 2.036,
278
+ "eval_steps_per_second": 0.509,
279
+ "step": 18
280
+ },
281
+ {
282
+ "epoch": 0.608,
283
+ "grad_norm": 0.7005232039249588,
284
+ "learning_rate": 2e-05,
285
+ "loss": 0.8707,
286
+ "step": 19
287
+ },
288
+ {
289
+ "epoch": 0.608,
290
+ "eval_loss": 0.842995822429657,
291
+ "eval_runtime": 98.3165,
292
+ "eval_samples_per_second": 2.034,
293
+ "eval_steps_per_second": 0.509,
294
+ "step": 19
295
+ },
296
+ {
297
+ "epoch": 0.64,
298
+ "grad_norm": 0.653693259495668,
299
+ "learning_rate": 2e-05,
300
+ "loss": 0.9332,
301
+ "step": 20
302
+ },
303
+ {
304
+ "epoch": 0.64,
305
+ "eval_loss": 0.8355565071105957,
306
+ "eval_runtime": 98.237,
307
+ "eval_samples_per_second": 2.036,
308
+ "eval_steps_per_second": 0.509,
309
+ "step": 20
310
+ },
311
+ {
312
+ "epoch": 0.672,
313
+ "grad_norm": 0.6600451404133434,
314
+ "learning_rate": 2e-05,
315
+ "loss": 0.8848,
316
+ "step": 21
317
+ },
318
+ {
319
+ "epoch": 0.672,
320
+ "eval_loss": 0.8297473788261414,
321
+ "eval_runtime": 98.1825,
322
+ "eval_samples_per_second": 2.037,
323
+ "eval_steps_per_second": 0.509,
324
+ "step": 21
325
+ },
326
+ {
327
+ "epoch": 0.704,
328
+ "grad_norm": 0.6666525650519819,
329
+ "learning_rate": 2e-05,
330
+ "loss": 0.9261,
331
+ "step": 22
332
+ },
333
+ {
334
+ "epoch": 0.704,
335
+ "eval_loss": 0.8248497247695923,
336
+ "eval_runtime": 98.1541,
337
+ "eval_samples_per_second": 2.038,
338
+ "eval_steps_per_second": 0.509,
339
+ "step": 22
340
+ },
341
+ {
342
+ "epoch": 0.736,
343
+ "grad_norm": 0.6759718697778233,
344
+ "learning_rate": 2e-05,
345
+ "loss": 1.0103,
346
+ "step": 23
347
+ },
348
+ {
349
+ "epoch": 0.736,
350
+ "eval_loss": 0.8214980959892273,
351
+ "eval_runtime": 98.2494,
352
+ "eval_samples_per_second": 2.036,
353
+ "eval_steps_per_second": 0.509,
354
+ "step": 23
355
+ },
356
+ {
357
+ "epoch": 0.768,
358
+ "grad_norm": 0.651870418762904,
359
+ "learning_rate": 2e-05,
360
+ "loss": 0.9538,
361
+ "step": 24
362
+ },
363
+ {
364
+ "epoch": 0.768,
365
+ "eval_loss": 0.818403959274292,
366
+ "eval_runtime": 97.9476,
367
+ "eval_samples_per_second": 2.042,
368
+ "eval_steps_per_second": 0.51,
369
+ "step": 24
370
+ },
371
+ {
372
+ "epoch": 0.8,
373
+ "grad_norm": 0.6985872283132858,
374
+ "learning_rate": 2e-05,
375
+ "loss": 0.8216,
376
+ "step": 25
377
+ },
378
+ {
379
+ "epoch": 0.8,
380
+ "eval_loss": 0.8149588108062744,
381
+ "eval_runtime": 95.6175,
382
+ "eval_samples_per_second": 2.092,
383
+ "eval_steps_per_second": 0.523,
384
+ "step": 25
385
+ },
386
+ {
387
+ "epoch": 0.832,
388
+ "grad_norm": 0.7801182369335715,
389
+ "learning_rate": 2e-05,
390
+ "loss": 0.8478,
391
+ "step": 26
392
+ },
393
+ {
394
+ "epoch": 0.832,
395
+ "eval_loss": 0.8100517392158508,
396
+ "eval_runtime": 99.7733,
397
+ "eval_samples_per_second": 2.005,
398
+ "eval_steps_per_second": 0.501,
399
+ "step": 26
400
+ },
401
+ {
402
+ "epoch": 0.864,
403
+ "grad_norm": 0.6727766374526198,
404
+ "learning_rate": 2e-05,
405
+ "loss": 0.9015,
406
+ "step": 27
407
+ },
408
+ {
409
+ "epoch": 0.864,
410
+ "eval_loss": 0.8051578998565674,
411
+ "eval_runtime": 95.7387,
412
+ "eval_samples_per_second": 2.089,
413
+ "eval_steps_per_second": 0.522,
414
+ "step": 27
415
+ },
416
+ {
417
+ "epoch": 0.896,
418
+ "grad_norm": 0.7398381040653764,
419
+ "learning_rate": 2e-05,
420
+ "loss": 0.8434,
421
+ "step": 28
422
+ },
423
+ {
424
+ "epoch": 0.896,
425
+ "eval_loss": 0.7998965382575989,
426
+ "eval_runtime": 95.7753,
427
+ "eval_samples_per_second": 2.088,
428
+ "eval_steps_per_second": 0.522,
429
+ "step": 28
430
+ },
431
+ {
432
+ "epoch": 0.928,
433
+ "grad_norm": 0.6837341164482282,
434
+ "learning_rate": 2e-05,
435
+ "loss": 0.9124,
436
+ "step": 29
437
+ },
438
+ {
439
+ "epoch": 0.928,
440
+ "eval_loss": 0.7946869134902954,
441
+ "eval_runtime": 95.933,
442
+ "eval_samples_per_second": 2.085,
443
+ "eval_steps_per_second": 0.521,
444
+ "step": 29
445
+ },
446
+ {
447
+ "epoch": 0.96,
448
+ "grad_norm": 0.7285508052728015,
449
+ "learning_rate": 2e-05,
450
+ "loss": 0.8252,
451
+ "step": 30
452
+ },
453
+ {
454
+ "epoch": 0.96,
455
+ "eval_loss": 0.7891057729721069,
456
+ "eval_runtime": 95.871,
457
+ "eval_samples_per_second": 2.086,
458
+ "eval_steps_per_second": 0.522,
459
+ "step": 30
460
+ },
461
+ {
462
+ "epoch": 0.992,
463
+ "grad_norm": 0.706524788728722,
464
+ "learning_rate": 2e-05,
465
+ "loss": 0.8382,
466
+ "step": 31
467
+ },
468
+ {
469
+ "epoch": 0.992,
470
+ "eval_loss": 0.7835636138916016,
471
+ "eval_runtime": 95.7491,
472
+ "eval_samples_per_second": 2.089,
473
+ "eval_steps_per_second": 0.522,
474
+ "step": 31
475
+ },
476
+ {
477
+ "epoch": 1.024,
478
+ "grad_norm": 0.7392763969473979,
479
+ "learning_rate": 2e-05,
480
+ "loss": 0.8586,
481
+ "step": 32
482
+ },
483
+ {
484
+ "epoch": 1.024,
485
+ "eval_loss": 0.7780101299285889,
486
+ "eval_runtime": 99.7493,
487
+ "eval_samples_per_second": 2.005,
488
+ "eval_steps_per_second": 0.501,
489
+ "step": 32
490
+ },
491
+ {
492
+ "epoch": 1.056,
493
+ "grad_norm": 0.7407143277408553,
494
+ "learning_rate": 2e-05,
495
+ "loss": 0.8438,
496
+ "step": 33
497
+ },
498
+ {
499
+ "epoch": 1.056,
500
+ "eval_loss": 0.7728690505027771,
501
+ "eval_runtime": 95.8863,
502
+ "eval_samples_per_second": 2.086,
503
+ "eval_steps_per_second": 0.521,
504
+ "step": 33
505
+ },
506
+ {
507
+ "epoch": 1.088,
508
+ "grad_norm": 0.7146296362894146,
509
+ "learning_rate": 2e-05,
510
+ "loss": 0.8357,
511
+ "step": 34
512
+ },
513
+ {
514
+ "epoch": 1.088,
515
+ "eval_loss": 0.7683935761451721,
516
+ "eval_runtime": 97.824,
517
+ "eval_samples_per_second": 2.044,
518
+ "eval_steps_per_second": 0.511,
519
+ "step": 34
520
+ },
521
+ {
522
+ "epoch": 1.12,
523
+ "grad_norm": 0.7117142678212836,
524
+ "learning_rate": 2e-05,
525
+ "loss": 0.7884,
526
+ "step": 35
527
+ },
528
+ {
529
+ "epoch": 1.12,
530
+ "eval_loss": 0.7646369338035583,
531
+ "eval_runtime": 95.8185,
532
+ "eval_samples_per_second": 2.087,
533
+ "eval_steps_per_second": 0.522,
534
+ "step": 35
535
+ },
536
+ {
537
+ "epoch": 1.152,
538
+ "grad_norm": 0.7735767817076163,
539
+ "learning_rate": 2e-05,
540
+ "loss": 0.8851,
541
+ "step": 36
542
+ },
543
+ {
544
+ "epoch": 1.152,
545
+ "eval_loss": 0.7616337537765503,
546
+ "eval_runtime": 96.1525,
547
+ "eval_samples_per_second": 2.08,
548
+ "eval_steps_per_second": 0.52,
549
+ "step": 36
550
+ },
551
+ {
552
+ "epoch": 1.184,
553
+ "grad_norm": 0.7386952203362822,
554
+ "learning_rate": 2e-05,
555
+ "loss": 0.7943,
556
+ "step": 37
557
+ },
558
+ {
559
+ "epoch": 1.184,
560
+ "eval_loss": 0.759408712387085,
561
+ "eval_runtime": 96.2772,
562
+ "eval_samples_per_second": 2.077,
563
+ "eval_steps_per_second": 0.519,
564
+ "step": 37
565
+ },
566
+ {
567
+ "epoch": 1.216,
568
+ "grad_norm": 0.6688305832985106,
569
+ "learning_rate": 2e-05,
570
+ "loss": 0.8433,
571
+ "step": 38
572
+ },
573
+ {
574
+ "epoch": 1.216,
575
+ "eval_loss": 0.7577520608901978,
576
+ "eval_runtime": 95.7726,
577
+ "eval_samples_per_second": 2.088,
578
+ "eval_steps_per_second": 0.522,
579
+ "step": 38
580
+ },
581
+ {
582
+ "epoch": 1.248,
583
+ "grad_norm": 0.6861808214947546,
584
+ "learning_rate": 2e-05,
585
+ "loss": 0.8132,
586
+ "step": 39
587
+ },
588
+ {
589
+ "epoch": 1.248,
590
+ "eval_loss": 0.7565059065818787,
591
+ "eval_runtime": 96.1577,
592
+ "eval_samples_per_second": 2.08,
593
+ "eval_steps_per_second": 0.52,
594
+ "step": 39
595
+ },
596
+ {
597
+ "epoch": 1.28,
598
+ "grad_norm": 0.7450886292190618,
599
+ "learning_rate": 2e-05,
600
+ "loss": 0.9067,
601
+ "step": 40
602
+ },
603
+ {
604
+ "epoch": 1.28,
605
+ "eval_loss": 0.7562046647071838,
606
+ "eval_runtime": 95.9983,
607
+ "eval_samples_per_second": 2.083,
608
+ "eval_steps_per_second": 0.521,
609
+ "step": 40
610
+ },
611
+ {
612
+ "epoch": 1.312,
613
+ "grad_norm": 0.7508586498301053,
614
+ "learning_rate": 2e-05,
615
+ "loss": 0.8642,
616
+ "step": 41
617
+ },
618
+ {
619
+ "epoch": 1.312,
620
+ "eval_loss": 0.755351722240448,
621
+ "eval_runtime": 96.6244,
622
+ "eval_samples_per_second": 2.07,
623
+ "eval_steps_per_second": 0.517,
624
+ "step": 41
625
+ },
626
+ {
627
+ "epoch": 1.3439999999999999,
628
+ "grad_norm": 0.7717273184776977,
629
+ "learning_rate": 2e-05,
630
+ "loss": 0.9406,
631
+ "step": 42
632
+ },
633
+ {
634
+ "epoch": 1.3439999999999999,
635
+ "eval_loss": 0.753773033618927,
636
+ "eval_runtime": 100.8127,
637
+ "eval_samples_per_second": 1.984,
638
+ "eval_steps_per_second": 0.496,
639
+ "step": 42
640
+ },
641
+ {
642
+ "epoch": 1.376,
643
+ "grad_norm": 0.7980115302909253,
644
+ "learning_rate": 2e-05,
645
+ "loss": 0.7732,
646
+ "step": 43
647
+ },
648
+ {
649
+ "epoch": 1.376,
650
+ "eval_loss": 0.7511720061302185,
651
+ "eval_runtime": 97.4372,
652
+ "eval_samples_per_second": 2.053,
653
+ "eval_steps_per_second": 0.513,
654
+ "step": 43
655
+ },
656
+ {
657
+ "epoch": 1.408,
658
+ "grad_norm": 0.794554904521861,
659
+ "learning_rate": 2e-05,
660
+ "loss": 0.8962,
661
+ "step": 44
662
+ },
663
+ {
664
+ "epoch": 1.408,
665
+ "eval_loss": 0.7484354376792908,
666
+ "eval_runtime": 96.7621,
667
+ "eval_samples_per_second": 2.067,
668
+ "eval_steps_per_second": 0.517,
669
+ "step": 44
670
+ },
671
+ {
672
+ "epoch": 1.44,
673
+ "grad_norm": 0.7964935137573818,
674
+ "learning_rate": 2e-05,
675
+ "loss": 0.7725,
676
+ "step": 45
677
+ },
678
+ {
679
+ "epoch": 1.44,
680
+ "eval_loss": 0.7454251050949097,
681
+ "eval_runtime": 96.5292,
682
+ "eval_samples_per_second": 2.072,
683
+ "eval_steps_per_second": 0.518,
684
+ "step": 45
685
+ },
686
+ {
687
+ "epoch": 1.472,
688
+ "grad_norm": 0.7477437094752549,
689
+ "learning_rate": 2e-05,
690
+ "loss": 0.8238,
691
+ "step": 46
692
+ },
693
+ {
694
+ "epoch": 1.472,
695
+ "eval_loss": 0.7427694201469421,
696
+ "eval_runtime": 96.4788,
697
+ "eval_samples_per_second": 2.073,
698
+ "eval_steps_per_second": 0.518,
699
+ "step": 46
700
+ },
701
+ {
702
+ "epoch": 1.504,
703
+ "grad_norm": 0.7443339980176984,
704
+ "learning_rate": 2e-05,
705
+ "loss": 0.8273,
706
+ "step": 47
707
+ },
708
+ {
709
+ "epoch": 1.504,
710
+ "eval_loss": 0.7407447099685669,
711
+ "eval_runtime": 96.5686,
712
+ "eval_samples_per_second": 2.071,
713
+ "eval_steps_per_second": 0.518,
714
+ "step": 47
715
+ },
716
+ {
717
+ "epoch": 1.536,
718
+ "grad_norm": 0.7901404920428264,
719
+ "learning_rate": 2e-05,
720
+ "loss": 0.7974,
721
+ "step": 48
722
+ },
723
+ {
724
+ "epoch": 1.536,
725
+ "eval_loss": 0.7381842136383057,
726
+ "eval_runtime": 96.6071,
727
+ "eval_samples_per_second": 2.07,
728
+ "eval_steps_per_second": 0.518,
729
+ "step": 48
730
+ },
731
+ {
732
+ "epoch": 1.568,
733
+ "grad_norm": 0.8677109521747711,
734
+ "learning_rate": 2e-05,
735
+ "loss": 0.8011,
736
+ "step": 49
737
+ },
738
+ {
739
+ "epoch": 1.568,
740
+ "eval_loss": 0.73555588722229,
741
+ "eval_runtime": 96.4189,
742
+ "eval_samples_per_second": 2.074,
743
+ "eval_steps_per_second": 0.519,
744
+ "step": 49
745
+ },
746
+ {
747
+ "epoch": 1.6,
748
+ "grad_norm": 0.8170436579363425,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.7762,
751
+ "step": 50
752
+ },
753
+ {
754
+ "epoch": 1.6,
755
+ "eval_loss": 0.7331439256668091,
756
+ "eval_runtime": 100.5875,
757
+ "eval_samples_per_second": 1.988,
758
+ "eval_steps_per_second": 0.497,
759
+ "step": 50
760
+ },
761
+ {
762
+ "epoch": 1.6320000000000001,
763
+ "grad_norm": 0.8190539924095326,
764
+ "learning_rate": 2e-05,
765
+ "loss": 0.7469,
766
+ "step": 51
767
+ },
768
+ {
769
+ "epoch": 1.6320000000000001,
770
+ "eval_loss": 0.7306647300720215,
771
+ "eval_runtime": 101.1429,
772
+ "eval_samples_per_second": 1.977,
773
+ "eval_steps_per_second": 0.494,
774
+ "step": 51
775
+ },
776
+ {
777
+ "epoch": 1.6640000000000001,
778
+ "grad_norm": 0.8044932603192197,
779
+ "learning_rate": 2e-05,
780
+ "loss": 0.8052,
781
+ "step": 52
782
+ },
783
+ {
784
+ "epoch": 1.6640000000000001,
785
+ "eval_loss": 0.7287429571151733,
786
+ "eval_runtime": 97.25,
787
+ "eval_samples_per_second": 2.057,
788
+ "eval_steps_per_second": 0.514,
789
+ "step": 52
790
+ },
791
+ {
792
+ "epoch": 1.696,
793
+ "grad_norm": 0.7811170846407103,
794
+ "learning_rate": 2e-05,
795
+ "loss": 0.755,
796
+ "step": 53
797
+ },
798
+ {
799
+ "epoch": 1.696,
800
+ "eval_loss": 0.7264651656150818,
801
+ "eval_runtime": 97.67,
802
+ "eval_samples_per_second": 2.048,
803
+ "eval_steps_per_second": 0.512,
804
+ "step": 53
805
+ },
806
+ {
807
+ "epoch": 1.728,
808
+ "grad_norm": 0.808405093976468,
809
+ "learning_rate": 2e-05,
810
+ "loss": 0.7838,
811
+ "step": 54
812
+ },
813
+ {
814
+ "epoch": 1.728,
815
+ "eval_loss": 0.7242828607559204,
816
+ "eval_runtime": 101.2008,
817
+ "eval_samples_per_second": 1.976,
818
+ "eval_steps_per_second": 0.494,
819
+ "step": 54
820
+ },
821
+ {
822
+ "epoch": 1.76,
823
+ "grad_norm": 0.8172106270954758,
824
+ "learning_rate": 2e-05,
825
+ "loss": 0.7123,
826
+ "step": 55
827
+ },
828
+ {
829
+ "epoch": 1.76,
830
+ "eval_loss": 0.7217574119567871,
831
+ "eval_runtime": 99.6145,
832
+ "eval_samples_per_second": 2.008,
833
+ "eval_steps_per_second": 0.502,
834
+ "step": 55
835
+ },
836
+ {
837
+ "epoch": 1.792,
838
+ "grad_norm": 0.83212530473105,
839
+ "learning_rate": 2e-05,
840
+ "loss": 0.8141,
841
+ "step": 56
842
+ },
843
+ {
844
+ "epoch": 1.792,
845
+ "eval_loss": 0.7192932367324829,
846
+ "eval_runtime": 97.1377,
847
+ "eval_samples_per_second": 2.059,
848
+ "eval_steps_per_second": 0.515,
849
+ "step": 56
850
+ },
851
+ {
852
+ "epoch": 1.8239999999999998,
853
+ "grad_norm": 0.8632612959683078,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.8005,
856
+ "step": 57
857
+ },
858
+ {
859
+ "epoch": 1.8239999999999998,
860
+ "eval_loss": 0.717003345489502,
861
+ "eval_runtime": 97.2871,
862
+ "eval_samples_per_second": 2.056,
863
+ "eval_steps_per_second": 0.514,
864
+ "step": 57
865
+ },
866
+ {
867
+ "epoch": 1.8559999999999999,
868
+ "grad_norm": 0.8362081570841255,
869
+ "learning_rate": 2e-05,
870
+ "loss": 0.8254,
871
+ "step": 58
872
+ },
873
+ {
874
+ "epoch": 1.8559999999999999,
875
+ "eval_loss": 0.715446949005127,
876
+ "eval_runtime": 97.5751,
877
+ "eval_samples_per_second": 2.05,
878
+ "eval_steps_per_second": 0.512,
879
+ "step": 58
880
+ },
881
+ {
882
+ "epoch": 1.888,
883
+ "grad_norm": 0.8862779841020042,
884
+ "learning_rate": 2e-05,
885
+ "loss": 0.7949,
886
+ "step": 59
887
+ },
888
+ {
889
+ "epoch": 1.888,
890
+ "eval_loss": 0.7145370244979858,
891
+ "eval_runtime": 97.2406,
892
+ "eval_samples_per_second": 2.057,
893
+ "eval_steps_per_second": 0.514,
894
+ "step": 59
895
+ },
896
+ {
897
+ "epoch": 1.92,
898
+ "grad_norm": 0.875656256488838,
899
+ "learning_rate": 2e-05,
900
+ "loss": 0.8277,
901
+ "step": 60
902
+ },
903
+ {
904
+ "epoch": 1.92,
905
+ "eval_loss": 0.7140547037124634,
906
+ "eval_runtime": 97.1485,
907
+ "eval_samples_per_second": 2.059,
908
+ "eval_steps_per_second": 0.515,
909
+ "step": 60
910
+ },
911
+ {
912
+ "epoch": 1.952,
913
+ "grad_norm": 0.8850690645543244,
914
+ "learning_rate": 2e-05,
915
+ "loss": 0.8117,
916
+ "step": 61
917
+ },
918
+ {
919
+ "epoch": 1.952,
920
+ "eval_loss": 0.7128701210021973,
921
+ "eval_runtime": 97.8906,
922
+ "eval_samples_per_second": 2.043,
923
+ "eval_steps_per_second": 0.511,
924
+ "step": 61
925
+ },
926
+ {
927
+ "epoch": 1.984,
928
+ "grad_norm": 0.8961641824408927,
929
+ "learning_rate": 2e-05,
930
+ "loss": 0.704,
931
+ "step": 62
932
+ },
933
+ {
934
+ "epoch": 1.984,
935
+ "eval_loss": 0.7107064127922058,
936
+ "eval_runtime": 102.2163,
937
+ "eval_samples_per_second": 1.957,
938
+ "eval_steps_per_second": 0.489,
939
+ "step": 62
940
+ },
941
+ {
942
+ "epoch": 2.016,
943
+ "grad_norm": 0.8602247372004996,
944
+ "learning_rate": 2e-05,
945
+ "loss": 0.8016,
946
+ "step": 63
947
+ },
948
+ {
949
+ "epoch": 2.016,
950
+ "eval_loss": 0.7091581225395203,
951
+ "eval_runtime": 98.2114,
952
+ "eval_samples_per_second": 2.036,
953
+ "eval_steps_per_second": 0.509,
954
+ "step": 63
955
+ },
956
+ {
957
+ "epoch": 2.048,
958
+ "grad_norm": 0.7881703384753784,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.7912,
961
+ "step": 64
962
+ },
963
+ {
964
+ "epoch": 2.048,
965
+ "eval_loss": 0.7081906199455261,
966
+ "eval_runtime": 98.9403,
967
+ "eval_samples_per_second": 2.021,
968
+ "eval_steps_per_second": 0.505,
969
+ "step": 64
970
+ },
971
+ {
972
+ "epoch": 2.08,
973
+ "grad_norm": 0.8436680506716614,
974
+ "learning_rate": 2e-05,
975
+ "loss": 0.6965,
976
+ "step": 65
977
+ },
978
+ {
979
+ "epoch": 2.08,
980
+ "eval_loss": 0.7070262432098389,
981
+ "eval_runtime": 97.7451,
982
+ "eval_samples_per_second": 2.046,
983
+ "eval_steps_per_second": 0.512,
984
+ "step": 65
985
+ },
986
+ {
987
+ "epoch": 2.112,
988
+ "grad_norm": 0.8694446846234115,
989
+ "learning_rate": 2e-05,
990
+ "loss": 0.7015,
991
+ "step": 66
992
+ },
993
+ {
994
+ "epoch": 2.112,
995
+ "eval_loss": 0.7055197358131409,
996
+ "eval_runtime": 97.994,
997
+ "eval_samples_per_second": 2.041,
998
+ "eval_steps_per_second": 0.51,
999
+ "step": 66
1000
+ },
1001
+ {
1002
+ "epoch": 2.144,
1003
+ "grad_norm": 0.9518475022730614,
1004
+ "learning_rate": 2e-05,
1005
+ "loss": 0.6952,
1006
+ "step": 67
1007
+ },
1008
+ {
1009
+ "epoch": 2.144,
1010
+ "eval_loss": 0.7035844326019287,
1011
+ "eval_runtime": 98.0296,
1012
+ "eval_samples_per_second": 2.04,
1013
+ "eval_steps_per_second": 0.51,
1014
+ "step": 67
1015
+ },
1016
+ {
1017
+ "epoch": 2.176,
1018
+ "grad_norm": 0.8662066024104106,
1019
+ "learning_rate": 2e-05,
1020
+ "loss": 0.7731,
1021
+ "step": 68
1022
+ },
1023
+ {
1024
+ "epoch": 2.176,
1025
+ "eval_loss": 0.7019283771514893,
1026
+ "eval_runtime": 100.0982,
1027
+ "eval_samples_per_second": 1.998,
1028
+ "eval_steps_per_second": 0.5,
1029
+ "step": 68
1030
+ },
1031
+ {
1032
+ "epoch": 2.208,
1033
+ "grad_norm": 0.9574631942368209,
1034
+ "learning_rate": 2e-05,
1035
+ "loss": 0.7572,
1036
+ "step": 69
1037
+ },
1038
+ {
1039
+ "epoch": 2.208,
1040
+ "eval_loss": 0.7011401653289795,
1041
+ "eval_runtime": 101.9267,
1042
+ "eval_samples_per_second": 1.962,
1043
+ "eval_steps_per_second": 0.491,
1044
+ "step": 69
1045
+ },
1046
+ {
1047
+ "epoch": 2.24,
1048
+ "grad_norm": 0.9477542521472675,
1049
+ "learning_rate": 2e-05,
1050
+ "loss": 0.7393,
1051
+ "step": 70
1052
+ },
1053
+ {
1054
+ "epoch": 2.24,
1055
+ "eval_loss": 0.7006180286407471,
1056
+ "eval_runtime": 101.9672,
1057
+ "eval_samples_per_second": 1.961,
1058
+ "eval_steps_per_second": 0.49,
1059
+ "step": 70
1060
+ },
1061
+ {
1062
+ "epoch": 2.2720000000000002,
1063
+ "grad_norm": 0.9612956116350272,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.7175,
1066
+ "step": 71
1067
+ },
1068
+ {
1069
+ "epoch": 2.2720000000000002,
1070
+ "eval_loss": 0.7002539038658142,
1071
+ "eval_runtime": 101.8755,
1072
+ "eval_samples_per_second": 1.963,
1073
+ "eval_steps_per_second": 0.491,
1074
+ "step": 71
1075
+ },
1076
+ {
1077
+ "epoch": 2.304,
1078
+ "grad_norm": 0.9934844303955727,
1079
+ "learning_rate": 2e-05,
1080
+ "loss": 0.791,
1081
+ "step": 72
1082
+ },
1083
+ {
1084
+ "epoch": 2.304,
1085
+ "eval_loss": 0.6997203230857849,
1086
+ "eval_runtime": 97.9926,
1087
+ "eval_samples_per_second": 2.041,
1088
+ "eval_steps_per_second": 0.51,
1089
+ "step": 72
1090
+ },
1091
+ {
1092
+ "epoch": 2.336,
1093
+ "grad_norm": 1.0540430431227044,
1094
+ "learning_rate": 2e-05,
1095
+ "loss": 0.7542,
1096
+ "step": 73
1097
+ },
1098
+ {
1099
+ "epoch": 2.336,
1100
+ "eval_loss": 0.6988361477851868,
1101
+ "eval_runtime": 100.3704,
1102
+ "eval_samples_per_second": 1.993,
1103
+ "eval_steps_per_second": 0.498,
1104
+ "step": 73
1105
+ },
1106
+ {
1107
+ "epoch": 2.368,
1108
+ "grad_norm": 1.0249397957961794,
1109
+ "learning_rate": 2e-05,
1110
+ "loss": 0.8084,
1111
+ "step": 74
1112
+ },
1113
+ {
1114
+ "epoch": 2.368,
1115
+ "eval_loss": 0.6980065703392029,
1116
+ "eval_runtime": 101.8958,
1117
+ "eval_samples_per_second": 1.963,
1118
+ "eval_steps_per_second": 0.491,
1119
+ "step": 74
1120
+ },
1121
+ {
1122
+ "epoch": 2.4,
1123
+ "grad_norm": 1.0445498365690145,
1124
+ "learning_rate": 2e-05,
1125
+ "loss": 0.7964,
1126
+ "step": 75
1127
+ },
1128
+ {
1129
+ "epoch": 2.4,
1130
+ "eval_loss": 0.6971798539161682,
1131
+ "eval_runtime": 98.1624,
1132
+ "eval_samples_per_second": 2.037,
1133
+ "eval_steps_per_second": 0.509,
1134
+ "step": 75
1135
+ },
1136
+ {
1137
+ "epoch": 2.432,
1138
+ "grad_norm": 0.9685893079320761,
1139
+ "learning_rate": 2e-05,
1140
+ "loss": 0.8047,
1141
+ "step": 76
1142
+ },
1143
+ {
1144
+ "epoch": 2.432,
1145
+ "eval_loss": 0.696861743927002,
1146
+ "eval_runtime": 98.6404,
1147
+ "eval_samples_per_second": 2.028,
1148
+ "eval_steps_per_second": 0.507,
1149
+ "step": 76
1150
+ },
1151
+ {
1152
+ "epoch": 2.464,
1153
+ "grad_norm": 0.9753091933204456,
1154
+ "learning_rate": 2e-05,
1155
+ "loss": 0.684,
1156
+ "step": 77
1157
+ },
1158
+ {
1159
+ "epoch": 2.464,
1160
+ "eval_loss": 0.6957904100418091,
1161
+ "eval_runtime": 98.8766,
1162
+ "eval_samples_per_second": 2.023,
1163
+ "eval_steps_per_second": 0.506,
1164
+ "step": 77
1165
+ },
1166
+ {
1167
+ "epoch": 2.496,
1168
+ "grad_norm": 0.9389149478503764,
1169
+ "learning_rate": 2e-05,
1170
+ "loss": 0.7434,
1171
+ "step": 78
1172
+ },
1173
+ {
1174
+ "epoch": 2.496,
1175
+ "eval_loss": 0.6943306922912598,
1176
+ "eval_runtime": 98.5751,
1177
+ "eval_samples_per_second": 2.029,
1178
+ "eval_steps_per_second": 0.507,
1179
+ "step": 78
1180
+ },
1181
+ {
1182
+ "epoch": 2.528,
1183
+ "grad_norm": 1.0675154845211299,
1184
+ "learning_rate": 2e-05,
1185
+ "loss": 0.7208,
1186
+ "step": 79
1187
+ },
1188
+ {
1189
+ "epoch": 2.528,
1190
+ "eval_loss": 0.6920651197433472,
1191
+ "eval_runtime": 99.0851,
1192
+ "eval_samples_per_second": 2.018,
1193
+ "eval_steps_per_second": 0.505,
1194
+ "step": 79
1195
+ },
1196
+ {
1197
+ "epoch": 2.56,
1198
+ "grad_norm": 0.9937936593307737,
1199
+ "learning_rate": 2e-05,
1200
+ "loss": 0.6948,
1201
+ "step": 80
1202
+ },
1203
+ {
1204
+ "epoch": 2.56,
1205
+ "eval_loss": 0.6899142265319824,
1206
+ "eval_runtime": 98.7974,
1207
+ "eval_samples_per_second": 2.024,
1208
+ "eval_steps_per_second": 0.506,
1209
+ "step": 80
1210
+ },
1211
+ {
1212
+ "epoch": 2.592,
1213
+ "grad_norm": 0.9650832276698476,
1214
+ "learning_rate": 2e-05,
1215
+ "loss": 0.7666,
1216
+ "step": 81
1217
+ },
1218
+ {
1219
+ "epoch": 2.592,
1220
+ "eval_loss": 0.6886695623397827,
1221
+ "eval_runtime": 98.6813,
1222
+ "eval_samples_per_second": 2.027,
1223
+ "eval_steps_per_second": 0.507,
1224
+ "step": 81
1225
+ },
1226
+ {
1227
+ "epoch": 2.624,
1228
+ "grad_norm": 0.9961610958296112,
1229
+ "learning_rate": 2e-05,
1230
+ "loss": 0.7741,
1231
+ "step": 82
1232
+ },
1233
+ {
1234
+ "epoch": 2.624,
1235
+ "eval_loss": 0.687745213508606,
1236
+ "eval_runtime": 98.624,
1237
+ "eval_samples_per_second": 2.028,
1238
+ "eval_steps_per_second": 0.507,
1239
+ "step": 82
1240
+ },
1241
+ {
1242
+ "epoch": 2.656,
1243
+ "grad_norm": 1.0261499699526089,
1244
+ "learning_rate": 2e-05,
1245
+ "loss": 0.7747,
1246
+ "step": 83
1247
+ },
1248
+ {
1249
+ "epoch": 2.656,
1250
+ "eval_loss": 0.6869972944259644,
1251
+ "eval_runtime": 98.9604,
1252
+ "eval_samples_per_second": 2.021,
1253
+ "eval_steps_per_second": 0.505,
1254
+ "step": 83
1255
+ },
1256
+ {
1257
+ "epoch": 2.6879999999999997,
1258
+ "grad_norm": 1.025059237745532,
1259
+ "learning_rate": 2e-05,
1260
+ "loss": 0.7526,
1261
+ "step": 84
1262
+ },
1263
+ {
1264
+ "epoch": 2.6879999999999997,
1265
+ "eval_loss": 0.6862147450447083,
1266
+ "eval_runtime": 98.4387,
1267
+ "eval_samples_per_second": 2.032,
1268
+ "eval_steps_per_second": 0.508,
1269
+ "step": 84
1270
+ },
1271
+ {
1272
+ "epoch": 2.7199999999999998,
1273
+ "grad_norm": 1.1383626266013125,
1274
+ "learning_rate": 2e-05,
1275
+ "loss": 0.683,
1276
+ "step": 85
1277
+ },
1278
+ {
1279
+ "epoch": 2.7199999999999998,
1280
+ "eval_loss": 0.6845572590827942,
1281
+ "eval_runtime": 98.4979,
1282
+ "eval_samples_per_second": 2.03,
1283
+ "eval_steps_per_second": 0.508,
1284
+ "step": 85
1285
+ },
1286
+ {
1287
+ "epoch": 2.752,
1288
+ "grad_norm": 1.0427739679421295,
1289
+ "learning_rate": 2e-05,
1290
+ "loss": 0.7362,
1291
+ "step": 86
1292
+ },
1293
+ {
1294
+ "epoch": 2.752,
1295
+ "eval_loss": 0.683280348777771,
1296
+ "eval_runtime": 103.6707,
1297
+ "eval_samples_per_second": 1.929,
1298
+ "eval_steps_per_second": 0.482,
1299
+ "step": 86
1300
+ },
1301
+ {
1302
+ "epoch": 2.784,
1303
+ "grad_norm": 1.1280129141879938,
1304
+ "learning_rate": 2e-05,
1305
+ "loss": 0.7743,
1306
+ "step": 87
1307
+ },
1308
+ {
1309
+ "epoch": 2.784,
1310
+ "eval_loss": 0.6824235320091248,
1311
+ "eval_runtime": 99.2995,
1312
+ "eval_samples_per_second": 2.014,
1313
+ "eval_steps_per_second": 0.504,
1314
+ "step": 87
1315
+ },
1316
+ {
1317
+ "epoch": 2.816,
1318
+ "grad_norm": 1.0017715497784696,
1319
+ "learning_rate": 2e-05,
1320
+ "loss": 0.7164,
1321
+ "step": 88
1322
+ },
1323
+ {
1324
+ "epoch": 2.816,
1325
+ "eval_loss": 0.6819013357162476,
1326
+ "eval_runtime": 99.5206,
1327
+ "eval_samples_per_second": 2.01,
1328
+ "eval_steps_per_second": 0.502,
1329
+ "step": 88
1330
+ },
1331
+ {
1332
+ "epoch": 2.848,
1333
+ "grad_norm": 1.0769673642284994,
1334
+ "learning_rate": 2e-05,
1335
+ "loss": 0.7013,
1336
+ "step": 89
1337
+ },
1338
+ {
1339
+ "epoch": 2.848,
1340
+ "eval_loss": 0.6820746064186096,
1341
+ "eval_runtime": 96.5197,
1342
+ "eval_samples_per_second": 2.072,
1343
+ "eval_steps_per_second": 0.518,
1344
+ "step": 89
1345
+ },
1346
+ {
1347
+ "epoch": 2.88,
1348
+ "grad_norm": 1.0389167281844591,
1349
+ "learning_rate": 2e-05,
1350
+ "loss": 0.6805,
1351
+ "step": 90
1352
+ },
1353
+ {
1354
+ "epoch": 2.88,
1355
+ "eval_loss": 0.6826525926589966,
1356
+ "eval_runtime": 96.0942,
1357
+ "eval_samples_per_second": 2.081,
1358
+ "eval_steps_per_second": 0.52,
1359
+ "step": 90
1360
+ },
1361
+ {
1362
+ "epoch": 2.912,
1363
+ "grad_norm": 0.9705743838620626,
1364
+ "learning_rate": 2e-05,
1365
+ "loss": 0.7681,
1366
+ "step": 91
1367
+ },
1368
+ {
1369
+ "epoch": 2.912,
1370
+ "eval_loss": 0.6836435198783875,
1371
+ "eval_runtime": 96.2441,
1372
+ "eval_samples_per_second": 2.078,
1373
+ "eval_steps_per_second": 0.52,
1374
+ "step": 91
1375
+ },
1376
+ {
1377
+ "epoch": 2.944,
1378
+ "grad_norm": 1.037823791993831,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 0.7532,
1381
+ "step": 92
1382
+ },
1383
+ {
1384
+ "epoch": 2.944,
1385
+ "eval_loss": 0.6845746040344238,
1386
+ "eval_runtime": 96.2394,
1387
+ "eval_samples_per_second": 2.078,
1388
+ "eval_steps_per_second": 0.52,
1389
+ "step": 92
1390
+ },
1391
+ {
1392
+ "epoch": 2.976,
1393
+ "grad_norm": 1.1323835942146157,
1394
+ "learning_rate": 2e-05,
1395
+ "loss": 0.7171,
1396
+ "step": 93
1397
+ },
1398
+ {
1399
+ "epoch": 2.976,
1400
+ "eval_loss": 0.684663712978363,
1401
+ "eval_runtime": 96.23,
1402
+ "eval_samples_per_second": 2.078,
1403
+ "eval_steps_per_second": 0.52,
1404
+ "step": 93
1405
+ },
1406
+ {
1407
+ "epoch": 3.008,
1408
+ "grad_norm": 1.1957864756602699,
1409
+ "learning_rate": 2e-05,
1410
+ "loss": 0.7166,
1411
+ "step": 94
1412
+ },
1413
+ {
1414
+ "epoch": 3.008,
1415
+ "eval_loss": 0.6830846667289734,
1416
+ "eval_runtime": 96.6549,
1417
+ "eval_samples_per_second": 2.069,
1418
+ "eval_steps_per_second": 0.517,
1419
+ "step": 94
1420
+ },
1421
+ {
1422
+ "epoch": 3.04,
1423
+ "grad_norm": 1.1077357794232636,
1424
+ "learning_rate": 2e-05,
1425
+ "loss": 0.6667,
1426
+ "step": 95
1427
+ },
1428
+ {
1429
+ "epoch": 3.04,
1430
+ "eval_loss": 0.6810076832771301,
1431
+ "eval_runtime": 96.3239,
1432
+ "eval_samples_per_second": 2.076,
1433
+ "eval_steps_per_second": 0.519,
1434
+ "step": 95
1435
+ },
1436
+ {
1437
+ "epoch": 3.072,
1438
+ "grad_norm": 1.1851219157184936,
1439
+ "learning_rate": 2e-05,
1440
+ "loss": 0.7115,
1441
+ "step": 96
1442
+ },
1443
+ {
1444
+ "epoch": 3.072,
1445
+ "eval_loss": 0.6796395778656006,
1446
+ "eval_runtime": 96.9109,
1447
+ "eval_samples_per_second": 2.064,
1448
+ "eval_steps_per_second": 0.516,
1449
+ "step": 96
1450
+ },
1451
+ {
1452
+ "epoch": 3.104,
1453
+ "grad_norm": 1.0812671042616444,
1454
+ "learning_rate": 2e-05,
1455
+ "loss": 0.7333,
1456
+ "step": 97
1457
+ },
1458
+ {
1459
+ "epoch": 3.104,
1460
+ "eval_loss": 0.6794567108154297,
1461
+ "eval_runtime": 96.7403,
1462
+ "eval_samples_per_second": 2.067,
1463
+ "eval_steps_per_second": 0.517,
1464
+ "step": 97
1465
+ },
1466
+ {
1467
+ "epoch": 3.136,
1468
+ "grad_norm": 1.130095597839828,
1469
+ "learning_rate": 2e-05,
1470
+ "loss": 0.6328,
1471
+ "step": 98
1472
+ },
1473
+ {
1474
+ "epoch": 3.136,
1475
+ "eval_loss": 0.6792007684707642,
1476
+ "eval_runtime": 96.8136,
1477
+ "eval_samples_per_second": 2.066,
1478
+ "eval_steps_per_second": 0.516,
1479
+ "step": 98
1480
+ },
1481
+ {
1482
+ "epoch": 3.168,
1483
+ "grad_norm": 1.16102100344116,
1484
+ "learning_rate": 2e-05,
1485
+ "loss": 0.6625,
1486
+ "step": 99
1487
+ },
1488
+ {
1489
+ "epoch": 3.168,
1490
+ "eval_loss": 0.6789132952690125,
1491
+ "eval_runtime": 96.6982,
1492
+ "eval_samples_per_second": 2.068,
1493
+ "eval_steps_per_second": 0.517,
1494
+ "step": 99
1495
+ },
1496
+ {
1497
+ "epoch": 3.2,
1498
+ "grad_norm": 1.226689811951201,
1499
+ "learning_rate": 2e-05,
1500
+ "loss": 0.7522,
1501
+ "step": 100
1502
+ },
1503
+ {
1504
+ "epoch": 3.2,
1505
+ "eval_loss": 0.6786602735519409,
1506
+ "eval_runtime": 96.6253,
1507
+ "eval_samples_per_second": 2.07,
1508
+ "eval_steps_per_second": 0.517,
1509
+ "step": 100
1510
+ },
1511
+ {
1512
+ "epoch": 3.232,
1513
+ "grad_norm": 1.1623462595850367,
1514
+ "learning_rate": 2e-05,
1515
+ "loss": 0.6755,
1516
+ "step": 101
1517
+ },
1518
+ {
1519
+ "epoch": 3.232,
1520
+ "eval_loss": 0.6791322827339172,
1521
+ "eval_runtime": 96.5222,
1522
+ "eval_samples_per_second": 2.072,
1523
+ "eval_steps_per_second": 0.518,
1524
+ "step": 101
1525
+ },
1526
+ {
1527
+ "epoch": 3.2640000000000002,
1528
+ "grad_norm": 1.16303930181089,
1529
+ "learning_rate": 2e-05,
1530
+ "loss": 0.6752,
1531
+ "step": 102
1532
+ },
1533
+ {
1534
+ "epoch": 3.2640000000000002,
1535
+ "eval_loss": 0.680637538433075,
1536
+ "eval_runtime": 96.8789,
1537
+ "eval_samples_per_second": 2.064,
1538
+ "eval_steps_per_second": 0.516,
1539
+ "step": 102
1540
+ },
1541
+ {
1542
+ "epoch": 3.296,
1543
+ "grad_norm": 1.166028046661615,
1544
+ "learning_rate": 2e-05,
1545
+ "loss": 0.6732,
1546
+ "step": 103
1547
+ },
1548
+ {
1549
+ "epoch": 3.296,
1550
+ "eval_loss": 0.6818951964378357,
1551
+ "eval_runtime": 96.7579,
1552
+ "eval_samples_per_second": 2.067,
1553
+ "eval_steps_per_second": 0.517,
1554
+ "step": 103
1555
+ },
1556
+ {
1557
+ "epoch": 3.328,
1558
+ "grad_norm": 1.2872370423601793,
1559
+ "learning_rate": 2e-05,
1560
+ "loss": 0.7713,
1561
+ "step": 104
1562
+ },
1563
+ {
1564
+ "epoch": 3.328,
1565
+ "eval_loss": 0.682328462600708,
1566
+ "eval_runtime": 98.3142,
1567
+ "eval_samples_per_second": 2.034,
1568
+ "eval_steps_per_second": 0.509,
1569
+ "step": 104
1570
+ },
1571
+ {
1572
+ "epoch": 3.36,
1573
+ "grad_norm": 1.1363822202896854,
1574
+ "learning_rate": 2e-05,
1575
+ "loss": 0.7429,
1576
+ "step": 105
1577
+ },
1578
+ {
1579
+ "epoch": 3.36,
1580
+ "eval_loss": 0.6817943453788757,
1581
+ "eval_runtime": 100.7507,
1582
+ "eval_samples_per_second": 1.985,
1583
+ "eval_steps_per_second": 0.496,
1584
+ "step": 105
1585
+ },
1586
+ {
1587
+ "epoch": 3.416,
1588
+ "grad_norm": 1.2711044658075554,
1589
+ "learning_rate": 2e-05,
1590
+ "loss": 0.7057,
1591
+ "step": 106
1592
+ },
1593
+ {
1594
+ "epoch": 3.416,
1595
+ "eval_loss": 0.6794378161430359,
1596
+ "eval_runtime": 100.4096,
1597
+ "eval_samples_per_second": 1.992,
1598
+ "eval_steps_per_second": 0.498,
1599
+ "step": 106
1600
+ },
1601
+ {
1602
+ "epoch": 3.448,
1603
+ "grad_norm": 1.3212295597772596,
1604
+ "learning_rate": 2e-05,
1605
+ "loss": 0.6982,
1606
+ "step": 107
1607
+ },
1608
+ {
1609
+ "epoch": 3.448,
1610
+ "eval_loss": 0.6767404079437256,
1611
+ "eval_runtime": 96.6386,
1612
+ "eval_samples_per_second": 2.07,
1613
+ "eval_steps_per_second": 0.517,
1614
+ "step": 107
1615
+ },
1616
+ {
1617
+ "epoch": 3.48,
1618
+ "grad_norm": 1.2420948881737728,
1619
+ "learning_rate": 2e-05,
1620
+ "loss": 0.7092,
1621
+ "step": 108
1622
+ },
1623
+ {
1624
+ "epoch": 3.48,
1625
+ "eval_loss": 0.6751566529273987,
1626
+ "eval_runtime": 95.1851,
1627
+ "eval_samples_per_second": 2.101,
1628
+ "eval_steps_per_second": 0.525,
1629
+ "step": 108
1630
+ },
1631
+ {
1632
+ "epoch": 3.512,
1633
+ "grad_norm": 1.2965352636029341,
1634
+ "learning_rate": 2e-05,
1635
+ "loss": 0.6715,
1636
+ "step": 109
1637
+ },
1638
+ {
1639
+ "epoch": 3.512,
1640
+ "eval_loss": 0.6750080585479736,
1641
+ "eval_runtime": 95.3479,
1642
+ "eval_samples_per_second": 2.098,
1643
+ "eval_steps_per_second": 0.524,
1644
+ "step": 109
1645
+ },
1646
+ {
1647
+ "epoch": 3.544,
1648
+ "grad_norm": 1.2789534479099607,
1649
+ "learning_rate": 2e-05,
1650
+ "loss": 0.6732,
1651
+ "step": 110
1652
+ },
1653
+ {
1654
+ "epoch": 3.544,
1655
+ "eval_loss": 0.6744334697723389,
1656
+ "eval_runtime": 95.3541,
1657
+ "eval_samples_per_second": 2.097,
1658
+ "eval_steps_per_second": 0.524,
1659
+ "step": 110
1660
+ },
1661
+ {
1662
+ "epoch": 3.576,
1663
+ "grad_norm": 1.3881035995379567,
1664
+ "learning_rate": 2e-05,
1665
+ "loss": 0.6777,
1666
+ "step": 111
1667
+ },
1668
+ {
1669
+ "epoch": 3.576,
1670
+ "eval_loss": 0.6730498671531677,
1671
+ "eval_runtime": 96.972,
1672
+ "eval_samples_per_second": 2.062,
1673
+ "eval_steps_per_second": 0.516,
1674
+ "step": 111
1675
+ },
1676
+ {
1677
+ "epoch": 3.608,
1678
+ "grad_norm": 1.2398078245019133,
1679
+ "learning_rate": 2e-05,
1680
+ "loss": 0.6314,
1681
+ "step": 112
1682
+ },
1683
+ {
1684
+ "epoch": 3.608,
1685
+ "eval_loss": 0.6725335717201233,
1686
+ "eval_runtime": 97.1794,
1687
+ "eval_samples_per_second": 2.058,
1688
+ "eval_steps_per_second": 0.515,
1689
+ "step": 112
1690
+ },
1691
+ {
1692
+ "epoch": 3.64,
1693
+ "grad_norm": 1.3383993031041075,
1694
+ "learning_rate": 2e-05,
1695
+ "loss": 0.6776,
1696
+ "step": 113
1697
+ },
1698
+ {
1699
+ "epoch": 3.64,
1700
+ "eval_loss": 0.6719880104064941,
1701
+ "eval_runtime": 97.2319,
1702
+ "eval_samples_per_second": 2.057,
1703
+ "eval_steps_per_second": 0.514,
1704
+ "step": 113
1705
+ },
1706
+ {
1707
+ "epoch": 3.672,
1708
+ "grad_norm": 1.289557205987285,
1709
+ "learning_rate": 2e-05,
1710
+ "loss": 0.7475,
1711
+ "step": 114
1712
+ },
1713
+ {
1714
+ "epoch": 3.672,
1715
+ "eval_loss": 0.6723533868789673,
1716
+ "eval_runtime": 97.3108,
1717
+ "eval_samples_per_second": 2.055,
1718
+ "eval_steps_per_second": 0.514,
1719
+ "step": 114
1720
+ },
1721
+ {
1722
+ "epoch": 3.7039999999999997,
1723
+ "grad_norm": 1.121644844950096,
1724
+ "learning_rate": 2e-05,
1725
+ "loss": 0.6813,
1726
+ "step": 115
1727
+ },
1728
+ {
1729
+ "epoch": 3.7039999999999997,
1730
+ "eval_loss": 0.673932671546936,
1731
+ "eval_runtime": 97.0919,
1732
+ "eval_samples_per_second": 2.06,
1733
+ "eval_steps_per_second": 0.515,
1734
+ "step": 115
1735
+ },
1736
+ {
1737
+ "epoch": 3.7359999999999998,
1738
+ "grad_norm": 1.5370551636574723,
1739
+ "learning_rate": 2e-05,
1740
+ "loss": 0.7036,
1741
+ "step": 116
1742
+ },
1743
+ {
1744
+ "epoch": 3.7359999999999998,
1745
+ "eval_loss": 0.6737978458404541,
1746
+ "eval_runtime": 97.0064,
1747
+ "eval_samples_per_second": 2.062,
1748
+ "eval_steps_per_second": 0.515,
1749
+ "step": 116
1750
+ },
1751
+ {
1752
+ "epoch": 3.768,
1753
+ "grad_norm": 1.3017720066449985,
1754
+ "learning_rate": 2e-05,
1755
+ "loss": 0.7048,
1756
+ "step": 117
1757
+ },
1758
+ {
1759
+ "epoch": 3.768,
1760
+ "eval_loss": 0.6731936931610107,
1761
+ "eval_runtime": 96.9134,
1762
+ "eval_samples_per_second": 2.064,
1763
+ "eval_steps_per_second": 0.516,
1764
+ "step": 117
1765
+ },
1766
+ {
1767
+ "epoch": 3.8,
1768
+ "grad_norm": 1.3976157986974596,
1769
+ "learning_rate": 2e-05,
1770
+ "loss": 0.6512,
1771
+ "step": 118
1772
+ },
1773
+ {
1774
+ "epoch": 3.8,
1775
+ "eval_loss": 0.6716210842132568,
1776
+ "eval_runtime": 97.4028,
1777
+ "eval_samples_per_second": 2.053,
1778
+ "eval_steps_per_second": 0.513,
1779
+ "step": 118
1780
+ },
1781
+ {
1782
+ "epoch": 3.832,
1783
+ "grad_norm": 1.3982632064891347,
1784
+ "learning_rate": 2e-05,
1785
+ "loss": 0.6481,
1786
+ "step": 119
1787
+ },
1788
+ {
1789
+ "epoch": 3.832,
1790
+ "eval_loss": 0.6690347194671631,
1791
+ "eval_runtime": 97.2096,
1792
+ "eval_samples_per_second": 2.057,
1793
+ "eval_steps_per_second": 0.514,
1794
+ "step": 119
1795
+ },
1796
+ {
1797
+ "epoch": 3.864,
1798
+ "grad_norm": 1.346077433712507,
1799
+ "learning_rate": 2e-05,
1800
+ "loss": 0.6005,
1801
+ "step": 120
1802
+ },
1803
+ {
1804
+ "epoch": 3.864,
1805
+ "eval_loss": 0.667186975479126,
1806
+ "eval_runtime": 97.326,
1807
+ "eval_samples_per_second": 2.055,
1808
+ "eval_steps_per_second": 0.514,
1809
+ "step": 120
1810
+ },
1811
+ {
1812
+ "epoch": 3.896,
1813
+ "grad_norm": 1.3142652448176726,
1814
+ "learning_rate": 2e-05,
1815
+ "loss": 0.6967,
1816
+ "step": 121
1817
+ },
1818
+ {
1819
+ "epoch": 3.896,
1820
+ "eval_loss": 0.6662881970405579,
1821
+ "eval_runtime": 101.7648,
1822
+ "eval_samples_per_second": 1.965,
1823
+ "eval_steps_per_second": 0.491,
1824
+ "step": 121
1825
+ },
1826
+ {
1827
+ "epoch": 3.928,
1828
+ "grad_norm": 1.3368669812290557,
1829
+ "learning_rate": 2e-05,
1830
+ "loss": 0.6954,
1831
+ "step": 122
1832
+ },
1833
+ {
1834
+ "epoch": 3.928,
1835
+ "eval_loss": 0.6659301519393921,
1836
+ "eval_runtime": 98.3123,
1837
+ "eval_samples_per_second": 2.034,
1838
+ "eval_steps_per_second": 0.509,
1839
+ "step": 122
1840
+ },
1841
+ {
1842
+ "epoch": 3.96,
1843
+ "grad_norm": 1.3992228513792793,
1844
+ "learning_rate": 2e-05,
1845
+ "loss": 0.6168,
1846
+ "step": 123
1847
+ },
1848
+ {
1849
+ "epoch": 3.96,
1850
+ "eval_loss": 0.6662861704826355,
1851
+ "eval_runtime": 98.5527,
1852
+ "eval_samples_per_second": 2.029,
1853
+ "eval_steps_per_second": 0.507,
1854
+ "step": 123
1855
+ },
1856
+ {
1857
+ "epoch": 3.992,
1858
+ "grad_norm": 1.403303492690172,
1859
+ "learning_rate": 2e-05,
1860
+ "loss": 0.6818,
1861
+ "step": 124
1862
+ },
1863
+ {
1864
+ "epoch": 3.992,
1865
+ "eval_loss": 0.666582465171814,
1866
+ "eval_runtime": 95.7576,
1867
+ "eval_samples_per_second": 2.089,
1868
+ "eval_steps_per_second": 0.522,
1869
+ "step": 124
1870
+ },
1871
+ {
1872
+ "epoch": 4.024,
1873
+ "grad_norm": 1.37383602466541,
1874
+ "learning_rate": 2e-05,
1875
+ "loss": 0.6539,
1876
+ "step": 125
1877
+ },
1878
+ {
1879
+ "epoch": 4.024,
1880
+ "eval_loss": 0.6666322350502014,
1881
+ "eval_runtime": 95.5774,
1882
+ "eval_samples_per_second": 2.093,
1883
+ "eval_steps_per_second": 0.523,
1884
+ "step": 125
1885
+ },
1886
+ {
1887
+ "epoch": 4.056,
1888
+ "grad_norm": 1.3760569151679132,
1889
+ "learning_rate": 2e-05,
1890
+ "loss": 0.7157,
1891
+ "step": 126
1892
+ },
1893
+ {
1894
+ "epoch": 4.056,
1895
+ "eval_loss": 0.6672561764717102,
1896
+ "eval_runtime": 99.9115,
1897
+ "eval_samples_per_second": 2.002,
1898
+ "eval_steps_per_second": 0.5,
1899
+ "step": 126
1900
+ },
1901
+ {
1902
+ "epoch": 4.088,
1903
+ "grad_norm": 1.3234088412698182,
1904
+ "learning_rate": 2e-05,
1905
+ "loss": 0.644,
1906
+ "step": 127
1907
+ },
1908
+ {
1909
+ "epoch": 4.088,
1910
+ "eval_loss": 0.6687076091766357,
1911
+ "eval_runtime": 95.8064,
1912
+ "eval_samples_per_second": 2.088,
1913
+ "eval_steps_per_second": 0.522,
1914
+ "step": 127
1915
+ },
1916
+ {
1917
+ "epoch": 4.12,
1918
+ "grad_norm": 1.300670493052994,
1919
+ "learning_rate": 2e-05,
1920
+ "loss": 0.6551,
1921
+ "step": 128
1922
+ },
1923
+ {
1924
+ "epoch": 4.12,
1925
+ "eval_loss": 0.6709404587745667,
1926
+ "eval_runtime": 97.4903,
1927
+ "eval_samples_per_second": 2.051,
1928
+ "eval_steps_per_second": 0.513,
1929
+ "step": 128
1930
+ },
1931
+ {
1932
+ "epoch": 4.152,
1933
+ "grad_norm": 1.469380020399129,
1934
+ "learning_rate": 2e-05,
1935
+ "loss": 0.584,
1936
+ "step": 129
1937
+ },
1938
+ {
1939
+ "epoch": 4.152,
1940
+ "eval_loss": 0.6740531325340271,
1941
+ "eval_runtime": 95.7054,
1942
+ "eval_samples_per_second": 2.09,
1943
+ "eval_steps_per_second": 0.522,
1944
+ "step": 129
1945
+ },
1946
+ {
1947
+ "epoch": 4.184,
1948
+ "grad_norm": 1.411712759624833,
1949
+ "learning_rate": 2e-05,
1950
+ "loss": 0.6349,
1951
+ "step": 130
1952
+ },
1953
+ {
1954
+ "epoch": 4.184,
1955
+ "eval_loss": 0.676266074180603,
1956
+ "eval_runtime": 95.9231,
1957
+ "eval_samples_per_second": 2.085,
1958
+ "eval_steps_per_second": 0.521,
1959
+ "step": 130
1960
+ },
1961
+ {
1962
+ "epoch": 4.216,
1963
+ "grad_norm": 1.5130330368136387,
1964
+ "learning_rate": 2e-05,
1965
+ "loss": 0.6328,
1966
+ "step": 131
1967
+ },
1968
+ {
1969
+ "epoch": 4.216,
1970
+ "eval_loss": 0.6771231293678284,
1971
+ "eval_runtime": 95.9553,
1972
+ "eval_samples_per_second": 2.084,
1973
+ "eval_steps_per_second": 0.521,
1974
+ "step": 131
1975
+ },
1976
+ {
1977
+ "epoch": 4.248,
1978
+ "grad_norm": 1.6050594949836388,
1979
+ "learning_rate": 2e-05,
1980
+ "loss": 0.6015,
1981
+ "step": 132
1982
+ },
1983
+ {
1984
+ "epoch": 4.248,
1985
+ "eval_loss": 0.6763471961021423,
1986
+ "eval_runtime": 96.0391,
1987
+ "eval_samples_per_second": 2.082,
1988
+ "eval_steps_per_second": 0.521,
1989
+ "step": 132
1990
+ },
1991
+ {
1992
+ "epoch": 4.28,
1993
+ "grad_norm": 1.6386261889303306,
1994
+ "learning_rate": 2e-05,
1995
+ "loss": 0.6793,
1996
+ "step": 133
1997
+ },
1998
+ {
1999
+ "epoch": 4.28,
2000
+ "eval_loss": 0.6736429333686829,
2001
+ "eval_runtime": 96.0315,
2002
+ "eval_samples_per_second": 2.083,
2003
+ "eval_steps_per_second": 0.521,
2004
+ "step": 133
2005
+ },
2006
+ {
2007
+ "epoch": 4.312,
2008
+ "grad_norm": 1.6157081951509844,
2009
+ "learning_rate": 2e-05,
2010
+ "loss": 0.5718,
2011
+ "step": 134
2012
+ },
2013
+ {
2014
+ "epoch": 4.312,
2015
+ "eval_loss": 0.672798752784729,
2016
+ "eval_runtime": 95.7787,
2017
+ "eval_samples_per_second": 2.088,
2018
+ "eval_steps_per_second": 0.522,
2019
+ "step": 134
2020
+ },
2021
+ {
2022
+ "epoch": 4.344,
2023
+ "grad_norm": 1.5634717589762641,
2024
+ "learning_rate": 2e-05,
2025
+ "loss": 0.6596,
2026
+ "step": 135
2027
+ },
2028
+ {
2029
+ "epoch": 4.344,
2030
+ "eval_loss": 0.67247474193573,
2031
+ "eval_runtime": 96.034,
2032
+ "eval_samples_per_second": 2.083,
2033
+ "eval_steps_per_second": 0.521,
2034
+ "step": 135
2035
+ },
2036
+ {
2037
+ "epoch": 4.376,
2038
+ "grad_norm": 1.428039434695232,
2039
+ "learning_rate": 2e-05,
2040
+ "loss": 0.6232,
2041
+ "step": 136
2042
+ },
2043
+ {
2044
+ "epoch": 4.376,
2045
+ "eval_loss": 0.6719217896461487,
2046
+ "eval_runtime": 100.919,
2047
+ "eval_samples_per_second": 1.982,
2048
+ "eval_steps_per_second": 0.495,
2049
+ "step": 136
2050
+ },
2051
+ {
2052
+ "epoch": 4.408,
2053
+ "grad_norm": 1.6531362233925706,
2054
+ "learning_rate": 2e-05,
2055
+ "loss": 0.633,
2056
+ "step": 137
2057
+ },
2058
+ {
2059
+ "epoch": 4.408,
2060
+ "eval_loss": 0.6712325811386108,
2061
+ "eval_runtime": 96.846,
2062
+ "eval_samples_per_second": 2.065,
2063
+ "eval_steps_per_second": 0.516,
2064
+ "step": 137
2065
+ },
2066
+ {
2067
+ "epoch": 4.44,
2068
+ "grad_norm": 1.5172899677155884,
2069
+ "learning_rate": 2e-05,
2070
+ "loss": 0.655,
2071
+ "step": 138
2072
+ },
2073
+ {
2074
+ "epoch": 4.44,
2075
+ "eval_loss": 0.6704159379005432,
2076
+ "eval_runtime": 96.9878,
2077
+ "eval_samples_per_second": 2.062,
2078
+ "eval_steps_per_second": 0.516,
2079
+ "step": 138
2080
+ },
2081
+ {
2082
+ "epoch": 4.4719999999999995,
2083
+ "grad_norm": 1.561414875887358,
2084
+ "learning_rate": 2e-05,
2085
+ "loss": 0.6457,
2086
+ "step": 139
2087
+ },
2088
+ {
2089
+ "epoch": 4.4719999999999995,
2090
+ "eval_loss": 0.6703745126724243,
2091
+ "eval_runtime": 96.8356,
2092
+ "eval_samples_per_second": 2.065,
2093
+ "eval_steps_per_second": 0.516,
2094
+ "step": 139
2095
+ },
2096
+ {
2097
+ "epoch": 4.504,
2098
+ "grad_norm": 1.559805415806941,
2099
+ "learning_rate": 2e-05,
2100
+ "loss": 0.5771,
2101
+ "step": 140
2102
+ },
2103
+ {
2104
+ "epoch": 4.504,
2105
+ "eval_loss": 0.6714787483215332,
2106
+ "eval_runtime": 96.7177,
2107
+ "eval_samples_per_second": 2.068,
2108
+ "eval_steps_per_second": 0.517,
2109
+ "step": 140
2110
+ },
2111
+ {
2112
+ "epoch": 4.536,
2113
+ "grad_norm": 1.4633822461746586,
2114
+ "learning_rate": 2e-05,
2115
+ "loss": 0.6637,
2116
+ "step": 141
2117
+ },
2118
+ {
2119
+ "epoch": 4.536,
2120
+ "eval_loss": 0.6731461882591248,
2121
+ "eval_runtime": 96.6195,
2122
+ "eval_samples_per_second": 2.07,
2123
+ "eval_steps_per_second": 0.517,
2124
+ "step": 141
2125
+ },
2126
+ {
2127
+ "epoch": 4.568,
2128
+ "grad_norm": 1.5001482095613168,
2129
+ "learning_rate": 2e-05,
2130
+ "loss": 0.599,
2131
+ "step": 142
2132
+ },
2133
+ {
2134
+ "epoch": 4.568,
2135
+ "eval_loss": 0.6755445599555969,
2136
+ "eval_runtime": 96.8032,
2137
+ "eval_samples_per_second": 2.066,
2138
+ "eval_steps_per_second": 0.517,
2139
+ "step": 142
2140
+ },
2141
+ {
2142
+ "epoch": 4.6,
2143
+ "grad_norm": 1.5542517583357578,
2144
+ "learning_rate": 2e-05,
2145
+ "loss": 0.6962,
2146
+ "step": 143
2147
+ },
2148
+ {
2149
+ "epoch": 4.6,
2150
+ "eval_loss": 0.676831841468811,
2151
+ "eval_runtime": 96.681,
2152
+ "eval_samples_per_second": 2.069,
2153
+ "eval_steps_per_second": 0.517,
2154
+ "step": 143
2155
+ },
2156
+ {
2157
+ "epoch": 4.632,
2158
+ "grad_norm": 1.7874313314626142,
2159
+ "learning_rate": 2e-05,
2160
+ "loss": 0.672,
2161
+ "step": 144
2162
+ },
2163
+ {
2164
+ "epoch": 4.632,
2165
+ "eval_loss": 0.6758092641830444,
2166
+ "eval_runtime": 96.7218,
2167
+ "eval_samples_per_second": 2.068,
2168
+ "eval_steps_per_second": 0.517,
2169
+ "step": 144
2170
+ },
2171
+ {
2172
+ "epoch": 4.664,
2173
+ "grad_norm": 1.7573329016960397,
2174
+ "learning_rate": 2e-05,
2175
+ "loss": 0.6765,
2176
+ "step": 145
2177
+ },
2178
+ {
2179
+ "epoch": 4.664,
2180
+ "eval_loss": 0.673170804977417,
2181
+ "eval_runtime": 96.9733,
2182
+ "eval_samples_per_second": 2.062,
2183
+ "eval_steps_per_second": 0.516,
2184
+ "step": 145
2185
+ },
2186
+ {
2187
+ "epoch": 4.696,
2188
+ "grad_norm": 1.810854526623386,
2189
+ "learning_rate": 2e-05,
2190
+ "loss": 0.603,
2191
+ "step": 146
2192
+ },
2193
+ {
2194
+ "epoch": 4.696,
2195
+ "eval_loss": 0.6707517504692078,
2196
+ "eval_runtime": 97.1234,
2197
+ "eval_samples_per_second": 2.059,
2198
+ "eval_steps_per_second": 0.515,
2199
+ "step": 146
2200
+ },
2201
+ {
2202
+ "epoch": 4.728,
2203
+ "grad_norm": 1.6602824802653684,
2204
+ "learning_rate": 2e-05,
2205
+ "loss": 0.6737,
2206
+ "step": 147
2207
+ },
2208
+ {
2209
+ "epoch": 4.728,
2210
+ "eval_loss": 0.6700997352600098,
2211
+ "eval_runtime": 97.684,
2212
+ "eval_samples_per_second": 2.047,
2213
+ "eval_steps_per_second": 0.512,
2214
+ "step": 147
2215
+ },
2216
+ {
2217
+ "epoch": 4.76,
2218
+ "grad_norm": 1.6003528772082565,
2219
+ "learning_rate": 2e-05,
2220
+ "loss": 0.6273,
2221
+ "step": 148
2222
+ },
2223
+ {
2224
+ "epoch": 4.76,
2225
+ "eval_loss": 0.6702569723129272,
2226
+ "eval_runtime": 97.9207,
2227
+ "eval_samples_per_second": 2.042,
2228
+ "eval_steps_per_second": 0.511,
2229
+ "step": 148
2230
+ },
2231
+ {
2232
+ "epoch": 4.792,
2233
+ "grad_norm": 1.7589414235088812,
2234
+ "learning_rate": 2e-05,
2235
+ "loss": 0.6506,
2236
+ "step": 149
2237
+ },
2238
+ {
2239
+ "epoch": 4.792,
2240
+ "eval_loss": 0.6695287227630615,
2241
+ "eval_runtime": 101.3732,
2242
+ "eval_samples_per_second": 1.973,
2243
+ "eval_steps_per_second": 0.493,
2244
+ "step": 149
2245
+ },
2246
+ {
2247
+ "epoch": 4.824,
2248
+ "grad_norm": 1.6938091591501239,
2249
+ "learning_rate": 2e-05,
2250
+ "loss": 0.6686,
2251
+ "step": 150
2252
+ },
2253
+ {
2254
+ "epoch": 4.824,
2255
+ "eval_loss": 0.668477475643158,
2256
+ "eval_runtime": 97.6627,
2257
+ "eval_samples_per_second": 2.048,
2258
+ "eval_steps_per_second": 0.512,
2259
+ "step": 150
2260
+ },
2261
+ {
2262
+ "epoch": 4.856,
2263
+ "grad_norm": 1.608763198857675,
2264
+ "learning_rate": 2e-05,
2265
+ "loss": 0.6195,
2266
+ "step": 151
2267
+ },
2268
+ {
2269
+ "epoch": 4.856,
2270
+ "eval_loss": 0.6693387627601624,
2271
+ "eval_runtime": 97.7685,
2272
+ "eval_samples_per_second": 2.046,
2273
+ "eval_steps_per_second": 0.511,
2274
+ "step": 151
2275
+ },
2276
+ {
2277
+ "epoch": 4.888,
2278
+ "grad_norm": 1.6097289501697254,
2279
+ "learning_rate": 2e-05,
2280
+ "loss": 0.6312,
2281
+ "step": 152
2282
+ },
2283
+ {
2284
+ "epoch": 4.888,
2285
+ "eval_loss": 0.671579122543335,
2286
+ "eval_runtime": 98.0084,
2287
+ "eval_samples_per_second": 2.041,
2288
+ "eval_steps_per_second": 0.51,
2289
+ "step": 152
2290
+ },
2291
+ {
2292
+ "epoch": 4.92,
2293
+ "grad_norm": 1.663125360797784,
2294
+ "learning_rate": 2e-05,
2295
+ "loss": 0.6085,
2296
+ "step": 153
2297
+ },
2298
+ {
2299
+ "epoch": 4.92,
2300
+ "eval_loss": 0.6731156706809998,
2301
+ "eval_runtime": 101.7316,
2302
+ "eval_samples_per_second": 1.966,
2303
+ "eval_steps_per_second": 0.491,
2304
+ "step": 153
2305
+ },
2306
+ {
2307
+ "epoch": 4.952,
2308
+ "grad_norm": 1.7048758510238142,
2309
+ "learning_rate": 2e-05,
2310
+ "loss": 0.5892,
2311
+ "step": 154
2312
+ },
2313
+ {
2314
+ "epoch": 4.952,
2315
+ "eval_loss": 0.6740117073059082,
2316
+ "eval_runtime": 99.4799,
2317
+ "eval_samples_per_second": 2.01,
2318
+ "eval_steps_per_second": 0.503,
2319
+ "step": 154
2320
+ },
2321
+ {
2322
+ "epoch": 4.984,
2323
+ "grad_norm": 1.76386882573663,
2324
+ "learning_rate": 2e-05,
2325
+ "loss": 0.672,
2326
+ "step": 155
2327
+ },
2328
+ {
2329
+ "epoch": 4.984,
2330
+ "eval_loss": 0.6743689775466919,
2331
+ "eval_runtime": 97.7253,
2332
+ "eval_samples_per_second": 2.047,
2333
+ "eval_steps_per_second": 0.512,
2334
+ "step": 155
2335
+ },
2336
+ {
2337
+ "epoch": 5.016,
2338
+ "grad_norm": 1.7509773113974625,
2339
+ "learning_rate": 2e-05,
2340
+ "loss": 0.6116,
2341
+ "step": 156
2342
+ },
2343
+ {
2344
+ "epoch": 5.016,
2345
+ "eval_loss": 0.6741358041763306,
2346
+ "eval_runtime": 98.3883,
2347
+ "eval_samples_per_second": 2.033,
2348
+ "eval_steps_per_second": 0.508,
2349
+ "step": 156
2350
+ },
2351
+ {
2352
+ "epoch": 5.048,
2353
+ "grad_norm": 1.5565965136472677,
2354
+ "learning_rate": 2e-05,
2355
+ "loss": 0.6127,
2356
+ "step": 157
2357
+ },
2358
+ {
2359
+ "epoch": 5.048,
2360
+ "eval_loss": 0.6740756034851074,
2361
+ "eval_runtime": 101.9672,
2362
+ "eval_samples_per_second": 1.961,
2363
+ "eval_steps_per_second": 0.49,
2364
+ "step": 157
2365
+ },
2366
+ {
2367
+ "epoch": 5.08,
2368
+ "grad_norm": 1.9955642505530427,
2369
+ "learning_rate": 2e-05,
2370
+ "loss": 0.6443,
2371
+ "step": 158
2372
+ },
2373
+ {
2374
+ "epoch": 5.08,
2375
+ "eval_loss": 0.6744682192802429,
2376
+ "eval_runtime": 98.3076,
2377
+ "eval_samples_per_second": 2.034,
2378
+ "eval_steps_per_second": 0.509,
2379
+ "step": 158
2380
+ },
2381
+ {
2382
+ "epoch": 5.112,
2383
+ "grad_norm": 1.8176947504827694,
2384
+ "learning_rate": 2e-05,
2385
+ "loss": 0.5888,
2386
+ "step": 159
2387
+ },
2388
+ {
2389
+ "epoch": 5.112,
2390
+ "eval_loss": 0.6758521795272827,
2391
+ "eval_runtime": 98.7513,
2392
+ "eval_samples_per_second": 2.025,
2393
+ "eval_steps_per_second": 0.506,
2394
+ "step": 159
2395
+ },
2396
+ {
2397
+ "epoch": 5.144,
2398
+ "grad_norm": 1.7331383222528083,
2399
+ "learning_rate": 2e-05,
2400
+ "loss": 0.5546,
2401
+ "step": 160
2402
+ },
2403
+ {
2404
+ "epoch": 5.144,
2405
+ "eval_loss": 0.6774488687515259,
2406
+ "eval_runtime": 98.3772,
2407
+ "eval_samples_per_second": 2.033,
2408
+ "eval_steps_per_second": 0.508,
2409
+ "step": 160
2410
+ },
2411
+ {
2412
+ "epoch": 5.176,
2413
+ "grad_norm": 1.75241290367163,
2414
+ "learning_rate": 2e-05,
2415
+ "loss": 0.5998,
2416
+ "step": 161
2417
+ },
2418
+ {
2419
+ "epoch": 5.176,
2420
+ "eval_loss": 0.6794152855873108,
2421
+ "eval_runtime": 98.3674,
2422
+ "eval_samples_per_second": 2.033,
2423
+ "eval_steps_per_second": 0.508,
2424
+ "step": 161
2425
+ },
2426
+ {
2427
+ "epoch": 5.208,
2428
+ "grad_norm": 1.7003083342136756,
2429
+ "learning_rate": 2e-05,
2430
+ "loss": 0.5975,
2431
+ "step": 162
2432
+ },
2433
+ {
2434
+ "epoch": 5.208,
2435
+ "eval_loss": 0.6831446290016174,
2436
+ "eval_runtime": 98.6795,
2437
+ "eval_samples_per_second": 2.027,
2438
+ "eval_steps_per_second": 0.507,
2439
+ "step": 162
2440
+ },
2441
+ {
2442
+ "epoch": 5.24,
2443
+ "grad_norm": 1.785157318448805,
2444
+ "learning_rate": 2e-05,
2445
+ "loss": 0.5781,
2446
+ "step": 163
2447
+ },
2448
+ {
2449
+ "epoch": 5.24,
2450
+ "eval_loss": 0.6875630021095276,
2451
+ "eval_runtime": 98.4039,
2452
+ "eval_samples_per_second": 2.032,
2453
+ "eval_steps_per_second": 0.508,
2454
+ "step": 163
2455
+ },
2456
+ {
2457
+ "epoch": 5.272,
2458
+ "grad_norm": 1.859036903737362,
2459
+ "learning_rate": 2e-05,
2460
+ "loss": 0.5615,
2461
+ "step": 164
2462
+ },
2463
+ {
2464
+ "epoch": 5.272,
2465
+ "eval_loss": 0.693569004535675,
2466
+ "eval_runtime": 99.2787,
2467
+ "eval_samples_per_second": 2.015,
2468
+ "eval_steps_per_second": 0.504,
2469
+ "step": 164
2470
+ },
2471
+ {
2472
+ "epoch": 5.304,
2473
+ "grad_norm": 2.290233637955866,
2474
+ "learning_rate": 2e-05,
2475
+ "loss": 0.5671,
2476
+ "step": 165
2477
+ },
2478
+ {
2479
+ "epoch": 5.304,
2480
+ "eval_loss": 0.6963732838630676,
2481
+ "eval_runtime": 98.5962,
2482
+ "eval_samples_per_second": 2.028,
2483
+ "eval_steps_per_second": 0.507,
2484
+ "step": 165
2485
+ },
2486
+ {
2487
+ "epoch": 5.336,
2488
+ "grad_norm": 2.227417470514151,
2489
+ "learning_rate": 2e-05,
2490
+ "loss": 0.5428,
2491
+ "step": 166
2492
+ },
2493
+ {
2494
+ "epoch": 5.336,
2495
+ "eval_loss": 0.6969068050384521,
2496
+ "eval_runtime": 98.6958,
2497
+ "eval_samples_per_second": 2.026,
2498
+ "eval_steps_per_second": 0.507,
2499
+ "step": 166
2500
+ },
2501
+ {
2502
+ "epoch": 5.368,
2503
+ "grad_norm": 1.9476792977962796,
2504
+ "learning_rate": 2e-05,
2505
+ "loss": 0.5565,
2506
+ "step": 167
2507
+ },
2508
+ {
2509
+ "epoch": 5.368,
2510
+ "eval_loss": 0.6963263154029846,
2511
+ "eval_runtime": 98.3324,
2512
+ "eval_samples_per_second": 2.034,
2513
+ "eval_steps_per_second": 0.508,
2514
+ "step": 167
2515
+ },
2516
+ {
2517
+ "epoch": 5.4,
2518
+ "grad_norm": 2.162996766467594,
2519
+ "learning_rate": 2e-05,
2520
+ "loss": 0.6007,
2521
+ "step": 168
2522
+ },
2523
+ {
2524
+ "epoch": 5.4,
2525
+ "eval_loss": 0.6939109563827515,
2526
+ "eval_runtime": 98.4668,
2527
+ "eval_samples_per_second": 2.031,
2528
+ "eval_steps_per_second": 0.508,
2529
+ "step": 168
2530
+ },
2531
+ {
2532
+ "epoch": 5.432,
2533
+ "grad_norm": 1.968981835172529,
2534
+ "learning_rate": 2e-05,
2535
+ "loss": 0.5998,
2536
+ "step": 169
2537
+ },
2538
+ {
2539
+ "epoch": 5.432,
2540
+ "eval_loss": 0.6911941766738892,
2541
+ "eval_runtime": 98.3172,
2542
+ "eval_samples_per_second": 2.034,
2543
+ "eval_steps_per_second": 0.509,
2544
+ "step": 169
2545
+ },
2546
+ {
2547
+ "epoch": 5.464,
2548
+ "grad_norm": 2.138560057900254,
2549
+ "learning_rate": 2e-05,
2550
+ "loss": 0.604,
2551
+ "step": 170
2552
+ },
2553
+ {
2554
+ "epoch": 5.464,
2555
+ "eval_loss": 0.6887597441673279,
2556
+ "eval_runtime": 98.5927,
2557
+ "eval_samples_per_second": 2.029,
2558
+ "eval_steps_per_second": 0.507,
2559
+ "step": 170
2560
+ },
2561
+ {
2562
+ "epoch": 5.496,
2563
+ "grad_norm": 2.1357688675388298,
2564
+ "learning_rate": 2e-05,
2565
+ "loss": 0.6759,
2566
+ "step": 171
2567
+ },
2568
+ {
2569
+ "epoch": 5.496,
2570
+ "eval_loss": 0.6867218017578125,
2571
+ "eval_runtime": 99.3257,
2572
+ "eval_samples_per_second": 2.014,
2573
+ "eval_steps_per_second": 0.503,
2574
+ "step": 171
2575
+ },
2576
+ {
2577
+ "epoch": 5.5280000000000005,
2578
+ "grad_norm": 1.9051181997840227,
2579
+ "learning_rate": 2e-05,
2580
+ "loss": 0.5683,
2581
+ "step": 172
2582
+ },
2583
+ {
2584
+ "epoch": 5.5280000000000005,
2585
+ "eval_loss": 0.6870632767677307,
2586
+ "eval_runtime": 101.5973,
2587
+ "eval_samples_per_second": 1.969,
2588
+ "eval_steps_per_second": 0.492,
2589
+ "step": 172
2590
+ },
2591
+ {
2592
+ "epoch": 5.5600000000000005,
2593
+ "grad_norm": 1.8730014322156263,
2594
+ "learning_rate": 2e-05,
2595
+ "loss": 0.5844,
2596
+ "step": 173
2597
+ },
2598
+ {
2599
+ "epoch": 5.5600000000000005,
2600
+ "eval_loss": 0.687735915184021,
2601
+ "eval_runtime": 99.0389,
2602
+ "eval_samples_per_second": 2.019,
2603
+ "eval_steps_per_second": 0.505,
2604
+ "step": 173
2605
+ },
2606
+ {
2607
+ "epoch": 5.592,
2608
+ "grad_norm": 2.0975374724504303,
2609
+ "learning_rate": 2e-05,
2610
+ "loss": 0.5527,
2611
+ "step": 174
2612
+ },
2613
+ {
2614
+ "epoch": 5.592,
2615
+ "eval_loss": 0.6883457899093628,
2616
+ "eval_runtime": 103.1356,
2617
+ "eval_samples_per_second": 1.939,
2618
+ "eval_steps_per_second": 0.485,
2619
+ "step": 174
2620
+ },
2621
+ {
2622
+ "epoch": 5.624,
2623
+ "grad_norm": 1.963623881621458,
2624
+ "learning_rate": 2e-05,
2625
+ "loss": 0.5733,
2626
+ "step": 175
2627
+ },
2628
+ {
2629
+ "epoch": 5.624,
2630
+ "eval_loss": 0.6880955696105957,
2631
+ "eval_runtime": 99.0308,
2632
+ "eval_samples_per_second": 2.02,
2633
+ "eval_steps_per_second": 0.505,
2634
+ "step": 175
2635
+ },
2636
+ {
2637
+ "epoch": 5.656,
2638
+ "grad_norm": 1.9734678506216243,
2639
+ "learning_rate": 2e-05,
2640
+ "loss": 0.5736,
2641
+ "step": 176
2642
+ },
2643
+ {
2644
+ "epoch": 5.656,
2645
+ "eval_loss": 0.6880485415458679,
2646
+ "eval_runtime": 98.9474,
2647
+ "eval_samples_per_second": 2.021,
2648
+ "eval_steps_per_second": 0.505,
2649
+ "step": 176
2650
+ },
2651
+ {
2652
+ "epoch": 5.688,
2653
+ "grad_norm": 2.0495076030097867,
2654
+ "learning_rate": 2e-05,
2655
+ "loss": 0.5776,
2656
+ "step": 177
2657
+ },
2658
+ {
2659
+ "epoch": 5.688,
2660
+ "eval_loss": 0.6872310042381287,
2661
+ "eval_runtime": 102.5632,
2662
+ "eval_samples_per_second": 1.95,
2663
+ "eval_steps_per_second": 0.488,
2664
+ "step": 177
2665
+ },
2666
+ {
2667
+ "epoch": 5.72,
2668
+ "grad_norm": 2.025156712060709,
2669
+ "learning_rate": 2e-05,
2670
+ "loss": 0.6222,
2671
+ "step": 178
2672
+ },
2673
+ {
2674
+ "epoch": 5.72,
2675
+ "eval_loss": 0.6866959929466248,
2676
+ "eval_runtime": 99.3548,
2677
+ "eval_samples_per_second": 2.013,
2678
+ "eval_steps_per_second": 0.503,
2679
+ "step": 178
2680
+ },
2681
+ {
2682
+ "epoch": 5.752,
2683
+ "grad_norm": 2.0714099206695527,
2684
+ "learning_rate": 2e-05,
2685
+ "loss": 0.5576,
2686
+ "step": 179
2687
+ },
2688
+ {
2689
+ "epoch": 5.752,
2690
+ "eval_loss": 0.6850792169570923,
2691
+ "eval_runtime": 98.948,
2692
+ "eval_samples_per_second": 2.021,
2693
+ "eval_steps_per_second": 0.505,
2694
+ "step": 179
2695
+ },
2696
+ {
2697
+ "epoch": 5.784,
2698
+ "grad_norm": 2.2380767249488596,
2699
+ "learning_rate": 2e-05,
2700
+ "loss": 0.5628,
2701
+ "step": 180
2702
+ },
2703
+ {
2704
+ "epoch": 5.784,
2705
+ "eval_loss": 0.6815983653068542,
2706
+ "eval_runtime": 99.1628,
2707
+ "eval_samples_per_second": 2.017,
2708
+ "eval_steps_per_second": 0.504,
2709
+ "step": 180
2710
+ },
2711
+ {
2712
+ "epoch": 5.816,
2713
+ "grad_norm": 2.104299018650581,
2714
+ "learning_rate": 2e-05,
2715
+ "loss": 0.6187,
2716
+ "step": 181
2717
+ },
2718
+ {
2719
+ "epoch": 5.816,
2720
+ "eval_loss": 0.6781284809112549,
2721
+ "eval_runtime": 99.6364,
2722
+ "eval_samples_per_second": 2.007,
2723
+ "eval_steps_per_second": 0.502,
2724
+ "step": 181
2725
+ },
2726
+ {
2727
+ "epoch": 5.848,
2728
+ "grad_norm": 1.8009729510896717,
2729
+ "learning_rate": 2e-05,
2730
+ "loss": 0.6278,
2731
+ "step": 182
2732
+ },
2733
+ {
2734
+ "epoch": 5.848,
2735
+ "eval_loss": 0.6774657964706421,
2736
+ "eval_runtime": 103.8813,
2737
+ "eval_samples_per_second": 1.925,
2738
+ "eval_steps_per_second": 0.481,
2739
+ "step": 182
2740
+ },
2741
+ {
2742
+ "epoch": 5.88,
2743
+ "grad_norm": 2.0126397552300004,
2744
+ "learning_rate": 2e-05,
2745
+ "loss": 0.5593,
2746
+ "step": 183
2747
+ },
2748
+ {
2749
+ "epoch": 5.88,
2750
+ "eval_loss": 0.6785845756530762,
2751
+ "eval_runtime": 99.366,
2752
+ "eval_samples_per_second": 2.013,
2753
+ "eval_steps_per_second": 0.503,
2754
+ "step": 183
2755
+ },
2756
+ {
2757
+ "epoch": 5.912,
2758
+ "grad_norm": 2.0468335329470935,
2759
+ "learning_rate": 2e-05,
2760
+ "loss": 0.5901,
2761
+ "step": 184
2762
+ },
2763
+ {
2764
+ "epoch": 5.912,
2765
+ "eval_loss": 0.679179847240448,
2766
+ "eval_runtime": 99.5061,
2767
+ "eval_samples_per_second": 2.01,
2768
+ "eval_steps_per_second": 0.502,
2769
+ "step": 184
2770
+ },
2771
+ {
2772
+ "epoch": 5.944,
2773
+ "grad_norm": 2.0374371712013644,
2774
+ "learning_rate": 2e-05,
2775
+ "loss": 0.5796,
2776
+ "step": 185
2777
+ },
2778
+ {
2779
+ "epoch": 5.944,
2780
+ "eval_loss": 0.6800404191017151,
2781
+ "eval_runtime": 103.6894,
2782
+ "eval_samples_per_second": 1.929,
2783
+ "eval_steps_per_second": 0.482,
2784
+ "step": 185
2785
+ },
2786
+ {
2787
+ "epoch": 5.976,
2788
+ "grad_norm": 1.8830432671282609,
2789
+ "learning_rate": 2e-05,
2790
+ "loss": 0.5817,
2791
+ "step": 186
2792
+ },
2793
+ {
2794
+ "epoch": 5.976,
2795
+ "eval_loss": 0.6804468631744385,
2796
+ "eval_runtime": 99.404,
2797
+ "eval_samples_per_second": 2.012,
2798
+ "eval_steps_per_second": 0.503,
2799
+ "step": 186
2800
+ },
2801
+ {
2802
+ "epoch": 6.032,
2803
+ "grad_norm": 2.017403579355368,
2804
+ "learning_rate": 2e-05,
2805
+ "loss": 0.5016,
2806
+ "step": 187
2807
+ },
2808
+ {
2809
+ "epoch": 6.032,
2810
+ "eval_loss": 0.6837186217308044,
2811
+ "eval_runtime": 100.1947,
2812
+ "eval_samples_per_second": 1.996,
2813
+ "eval_steps_per_second": 0.499,
2814
+ "step": 187
2815
+ },
2816
+ {
2817
+ "epoch": 6.064,
2818
+ "grad_norm": 2.0651550543256993,
2819
+ "learning_rate": 2e-05,
2820
+ "loss": 0.553,
2821
+ "step": 188
2822
+ },
2823
+ {
2824
+ "epoch": 6.064,
2825
+ "eval_loss": 0.69077467918396,
2826
+ "eval_runtime": 95.3645,
2827
+ "eval_samples_per_second": 2.097,
2828
+ "eval_steps_per_second": 0.524,
2829
+ "step": 188
2830
+ },
2831
+ {
2832
+ "epoch": 6.096,
2833
+ "grad_norm": 1.9670810588857728,
2834
+ "learning_rate": 2e-05,
2835
+ "loss": 0.4774,
2836
+ "step": 189
2837
+ },
2838
+ {
2839
+ "epoch": 6.096,
2840
+ "eval_loss": 0.6994524598121643,
2841
+ "eval_runtime": 95.1365,
2842
+ "eval_samples_per_second": 2.102,
2843
+ "eval_steps_per_second": 0.526,
2844
+ "step": 189
2845
+ },
2846
+ {
2847
+ "epoch": 6.128,
2848
+ "grad_norm": 2.3863132463229584,
2849
+ "learning_rate": 2e-05,
2850
+ "loss": 0.5911,
2851
+ "step": 190
2852
+ },
2853
+ {
2854
+ "epoch": 6.128,
2855
+ "eval_loss": 0.7065584063529968,
2856
+ "eval_runtime": 95.4502,
2857
+ "eval_samples_per_second": 2.095,
2858
+ "eval_steps_per_second": 0.524,
2859
+ "step": 190
2860
+ },
2861
+ {
2862
+ "epoch": 6.16,
2863
+ "grad_norm": 2.383412169995471,
2864
+ "learning_rate": 2e-05,
2865
+ "loss": 0.5147,
2866
+ "step": 191
2867
+ },
2868
+ {
2869
+ "epoch": 6.16,
2870
+ "eval_loss": 0.7110430002212524,
2871
+ "eval_runtime": 95.3022,
2872
+ "eval_samples_per_second": 2.099,
2873
+ "eval_steps_per_second": 0.525,
2874
+ "step": 191
2875
+ },
2876
+ {
2877
+ "epoch": 6.192,
2878
+ "grad_norm": 2.232544369144536,
2879
+ "learning_rate": 2e-05,
2880
+ "loss": 0.5373,
2881
+ "step": 192
2882
+ },
2883
+ {
2884
+ "epoch": 6.192,
2885
+ "eval_loss": 0.7141790986061096,
2886
+ "eval_runtime": 95.5843,
2887
+ "eval_samples_per_second": 2.092,
2888
+ "eval_steps_per_second": 0.523,
2889
+ "step": 192
2890
+ },
2891
+ {
2892
+ "epoch": 6.224,
2893
+ "grad_norm": 2.3948013626262967,
2894
+ "learning_rate": 2e-05,
2895
+ "loss": 0.5673,
2896
+ "step": 193
2897
+ },
2898
+ {
2899
+ "epoch": 6.224,
2900
+ "eval_loss": 0.7145071625709534,
2901
+ "eval_runtime": 96.0221,
2902
+ "eval_samples_per_second": 2.083,
2903
+ "eval_steps_per_second": 0.521,
2904
+ "step": 193
2905
+ },
2906
+ {
2907
+ "epoch": 6.256,
2908
+ "grad_norm": 2.282347010387328,
2909
+ "learning_rate": 2e-05,
2910
+ "loss": 0.4801,
2911
+ "step": 194
2912
+ },
2913
+ {
2914
+ "epoch": 6.256,
2915
+ "eval_loss": 0.7155389189720154,
2916
+ "eval_runtime": 95.409,
2917
+ "eval_samples_per_second": 2.096,
2918
+ "eval_steps_per_second": 0.524,
2919
+ "step": 194
2920
+ },
2921
+ {
2922
+ "epoch": 6.288,
2923
+ "grad_norm": 2.7116825717896456,
2924
+ "learning_rate": 2e-05,
2925
+ "loss": 0.5129,
2926
+ "step": 195
2927
+ },
2928
+ {
2929
+ "epoch": 6.288,
2930
+ "eval_loss": 0.7152263522148132,
2931
+ "eval_runtime": 95.627,
2932
+ "eval_samples_per_second": 2.091,
2933
+ "eval_steps_per_second": 0.523,
2934
+ "step": 195
2935
+ },
2936
+ {
2937
+ "epoch": 6.32,
2938
+ "grad_norm": 2.448822719551579,
2939
+ "learning_rate": 2e-05,
2940
+ "loss": 0.489,
2941
+ "step": 196
2942
+ },
2943
+ {
2944
+ "epoch": 6.32,
2945
+ "eval_loss": 0.7134693264961243,
2946
+ "eval_runtime": 96.5906,
2947
+ "eval_samples_per_second": 2.071,
2948
+ "eval_steps_per_second": 0.518,
2949
+ "step": 196
2950
+ },
2951
+ {
2952
+ "epoch": 6.352,
2953
+ "grad_norm": 2.4837784920734713,
2954
+ "learning_rate": 2e-05,
2955
+ "loss": 0.596,
2956
+ "step": 197
2957
+ },
2958
+ {
2959
+ "epoch": 6.352,
2960
+ "eval_loss": 0.712216317653656,
2961
+ "eval_runtime": 96.6659,
2962
+ "eval_samples_per_second": 2.069,
2963
+ "eval_steps_per_second": 0.517,
2964
+ "step": 197
2965
+ },
2966
+ {
2967
+ "epoch": 6.384,
2968
+ "grad_norm": 2.2425618673272503,
2969
+ "learning_rate": 2e-05,
2970
+ "loss": 0.5539,
2971
+ "step": 198
2972
+ },
2973
+ {
2974
+ "epoch": 6.384,
2975
+ "eval_loss": 0.7105411291122437,
2976
+ "eval_runtime": 100.6949,
2977
+ "eval_samples_per_second": 1.986,
2978
+ "eval_steps_per_second": 0.497,
2979
+ "step": 198
2980
+ },
2981
+ {
2982
+ "epoch": 6.416,
2983
+ "grad_norm": 2.523025242815658,
2984
+ "learning_rate": 2e-05,
2985
+ "loss": 0.4946,
2986
+ "step": 199
2987
+ },
2988
+ {
2989
+ "epoch": 6.416,
2990
+ "eval_loss": 0.7091856598854065,
2991
+ "eval_runtime": 97.1843,
2992
+ "eval_samples_per_second": 2.058,
2993
+ "eval_steps_per_second": 0.514,
2994
+ "step": 199
2995
+ },
2996
+ {
2997
+ "epoch": 6.448,
2998
+ "grad_norm": 2.4706535243909555,
2999
+ "learning_rate": 2e-05,
3000
+ "loss": 0.467,
3001
+ "step": 200
3002
+ },
3003
+ {
3004
+ "epoch": 6.448,
3005
+ "eval_loss": 0.7090812921524048,
3006
+ "eval_runtime": 97.069,
3007
+ "eval_samples_per_second": 2.06,
3008
+ "eval_steps_per_second": 0.515,
3009
+ "step": 200
3010
+ },
3011
+ {
3012
+ "epoch": 6.48,
3013
+ "grad_norm": 2.4466274248279833,
3014
+ "learning_rate": 2e-05,
3015
+ "loss": 0.55,
3016
+ "step": 201
3017
+ },
3018
+ {
3019
+ "epoch": 6.48,
3020
+ "eval_loss": 0.7091609835624695,
3021
+ "eval_runtime": 97.1978,
3022
+ "eval_samples_per_second": 2.058,
3023
+ "eval_steps_per_second": 0.514,
3024
+ "step": 201
3025
+ },
3026
+ {
3027
+ "epoch": 6.5120000000000005,
3028
+ "grad_norm": 2.1567587874173717,
3029
+ "learning_rate": 2e-05,
3030
+ "loss": 0.5304,
3031
+ "step": 202
3032
+ },
3033
+ {
3034
+ "epoch": 6.5120000000000005,
3035
+ "eval_loss": 0.7102614641189575,
3036
+ "eval_runtime": 98.9298,
3037
+ "eval_samples_per_second": 2.022,
3038
+ "eval_steps_per_second": 0.505,
3039
+ "step": 202
3040
+ },
3041
+ {
3042
+ "epoch": 6.5440000000000005,
3043
+ "grad_norm": 2.2160906906230533,
3044
+ "learning_rate": 2e-05,
3045
+ "loss": 0.5083,
3046
+ "step": 203
3047
+ },
3048
+ {
3049
+ "epoch": 6.5440000000000005,
3050
+ "eval_loss": 0.7119375467300415,
3051
+ "eval_runtime": 97.0494,
3052
+ "eval_samples_per_second": 2.061,
3053
+ "eval_steps_per_second": 0.515,
3054
+ "step": 203
3055
+ },
3056
+ {
3057
+ "epoch": 6.576,
3058
+ "grad_norm": 2.456064686081785,
3059
+ "learning_rate": 2e-05,
3060
+ "loss": 0.5854,
3061
+ "step": 204
3062
+ },
3063
+ {
3064
+ "epoch": 6.576,
3065
+ "eval_loss": 0.7119318246841431,
3066
+ "eval_runtime": 97.165,
3067
+ "eval_samples_per_second": 2.058,
3068
+ "eval_steps_per_second": 0.515,
3069
+ "step": 204
3070
+ },
3071
+ {
3072
+ "epoch": 6.608,
3073
+ "grad_norm": 2.5571159929171987,
3074
+ "learning_rate": 2e-05,
3075
+ "loss": 0.5087,
3076
+ "step": 205
3077
+ },
3078
+ {
3079
+ "epoch": 6.608,
3080
+ "eval_loss": 0.7104336619377136,
3081
+ "eval_runtime": 95.6354,
3082
+ "eval_samples_per_second": 2.091,
3083
+ "eval_steps_per_second": 0.523,
3084
+ "step": 205
3085
+ },
3086
+ {
3087
+ "epoch": 6.64,
3088
+ "grad_norm": 2.3833463477288443,
3089
+ "learning_rate": 2e-05,
3090
+ "loss": 0.5928,
3091
+ "step": 206
3092
+ },
3093
+ {
3094
+ "epoch": 6.64,
3095
+ "eval_loss": 0.7107654809951782,
3096
+ "eval_runtime": 95.7142,
3097
+ "eval_samples_per_second": 2.09,
3098
+ "eval_steps_per_second": 0.522,
3099
+ "step": 206
3100
+ },
3101
+ {
3102
+ "epoch": 6.672,
3103
+ "grad_norm": 2.6180355690739345,
3104
+ "learning_rate": 2e-05,
3105
+ "loss": 0.5246,
3106
+ "step": 207
3107
+ },
3108
+ {
3109
+ "epoch": 6.672,
3110
+ "eval_loss": 0.7117599248886108,
3111
+ "eval_runtime": 95.5237,
3112
+ "eval_samples_per_second": 2.094,
3113
+ "eval_steps_per_second": 0.523,
3114
+ "step": 207
3115
+ },
3116
+ {
3117
+ "epoch": 6.704,
3118
+ "grad_norm": 2.5327556511948934,
3119
+ "learning_rate": 2e-05,
3120
+ "loss": 0.5142,
3121
+ "step": 208
3122
+ },
3123
+ {
3124
+ "epoch": 6.704,
3125
+ "eval_loss": 0.7127364873886108,
3126
+ "eval_runtime": 95.5626,
3127
+ "eval_samples_per_second": 2.093,
3128
+ "eval_steps_per_second": 0.523,
3129
+ "step": 208
3130
+ },
3131
+ {
3132
+ "epoch": 6.736,
3133
+ "grad_norm": 2.7583060106689454,
3134
+ "learning_rate": 2e-05,
3135
+ "loss": 0.4868,
3136
+ "step": 209
3137
+ },
3138
+ {
3139
+ "epoch": 6.736,
3140
+ "eval_loss": 0.7133345603942871,
3141
+ "eval_runtime": 95.6791,
3142
+ "eval_samples_per_second": 2.09,
3143
+ "eval_steps_per_second": 0.523,
3144
+ "step": 209
3145
+ },
3146
+ {
3147
+ "epoch": 6.768,
3148
+ "grad_norm": 2.7441146469244115,
3149
+ "learning_rate": 2e-05,
3150
+ "loss": 0.5935,
3151
+ "step": 210
3152
+ },
3153
+ {
3154
+ "epoch": 6.768,
3155
+ "eval_loss": 0.7118194699287415,
3156
+ "eval_runtime": 95.4472,
3157
+ "eval_samples_per_second": 2.095,
3158
+ "eval_steps_per_second": 0.524,
3159
+ "step": 210
3160
+ },
3161
+ {
3162
+ "epoch": 6.8,
3163
+ "grad_norm": 2.7452663949689295,
3164
+ "learning_rate": 2e-05,
3165
+ "loss": 0.5331,
3166
+ "step": 211
3167
+ },
3168
+ {
3169
+ "epoch": 6.8,
3170
+ "eval_loss": 0.7106044292449951,
3171
+ "eval_runtime": 99.8571,
3172
+ "eval_samples_per_second": 2.003,
3173
+ "eval_steps_per_second": 0.501,
3174
+ "step": 211
3175
+ },
3176
+ {
3177
+ "epoch": 6.832,
3178
+ "grad_norm": 2.454028115196185,
3179
+ "learning_rate": 2e-05,
3180
+ "loss": 0.5491,
3181
+ "step": 212
3182
+ },
3183
+ {
3184
+ "epoch": 6.832,
3185
+ "eval_loss": 0.7110446691513062,
3186
+ "eval_runtime": 96.9239,
3187
+ "eval_samples_per_second": 2.063,
3188
+ "eval_steps_per_second": 0.516,
3189
+ "step": 212
3190
+ },
3191
+ {
3192
+ "epoch": 6.864,
3193
+ "grad_norm": 2.758969331776205,
3194
+ "learning_rate": 2e-05,
3195
+ "loss": 0.5442,
3196
+ "step": 213
3197
+ },
3198
+ {
3199
+ "epoch": 6.864,
3200
+ "eval_loss": 0.710289478302002,
3201
+ "eval_runtime": 96.7481,
3202
+ "eval_samples_per_second": 2.067,
3203
+ "eval_steps_per_second": 0.517,
3204
+ "step": 213
3205
+ },
3206
+ {
3207
+ "epoch": 6.896,
3208
+ "grad_norm": 2.5394726231273457,
3209
+ "learning_rate": 2e-05,
3210
+ "loss": 0.5422,
3211
+ "step": 214
3212
+ },
3213
+ {
3214
+ "epoch": 6.896,
3215
+ "eval_loss": 0.7084080576896667,
3216
+ "eval_runtime": 98.6547,
3217
+ "eval_samples_per_second": 2.027,
3218
+ "eval_steps_per_second": 0.507,
3219
+ "step": 214
3220
+ },
3221
+ {
3222
+ "epoch": 6.928,
3223
+ "grad_norm": 2.642919051796586,
3224
+ "learning_rate": 2e-05,
3225
+ "loss": 0.5721,
3226
+ "step": 215
3227
+ },
3228
+ {
3229
+ "epoch": 6.928,
3230
+ "eval_loss": 0.7063835263252258,
3231
+ "eval_runtime": 96.9686,
3232
+ "eval_samples_per_second": 2.063,
3233
+ "eval_steps_per_second": 0.516,
3234
+ "step": 215
3235
+ },
3236
+ {
3237
+ "epoch": 6.96,
3238
+ "grad_norm": 2.501395694239305,
3239
+ "learning_rate": 2e-05,
3240
+ "loss": 0.5742,
3241
+ "step": 216
3242
+ },
3243
+ {
3244
+ "epoch": 6.96,
3245
+ "eval_loss": 0.7037466168403625,
3246
+ "eval_runtime": 96.5477,
3247
+ "eval_samples_per_second": 2.072,
3248
+ "eval_steps_per_second": 0.518,
3249
+ "step": 216
3250
+ },
3251
+ {
3252
+ "epoch": 6.992,
3253
+ "grad_norm": 2.685414325564133,
3254
+ "learning_rate": 2e-05,
3255
+ "loss": 0.5195,
3256
+ "step": 217
3257
+ },
3258
+ {
3259
+ "epoch": 6.992,
3260
+ "eval_loss": 0.7025836110115051,
3261
+ "eval_runtime": 97.0823,
3262
+ "eval_samples_per_second": 2.06,
3263
+ "eval_steps_per_second": 0.515,
3264
+ "step": 217
3265
+ },
3266
+ {
3267
+ "epoch": 7.024,
3268
+ "grad_norm": 2.558047543529016,
3269
+ "learning_rate": 2e-05,
3270
+ "loss": 0.4689,
3271
+ "step": 218
3272
+ },
3273
+ {
3274
+ "epoch": 7.024,
3275
+ "eval_loss": 0.7044098377227783,
3276
+ "eval_runtime": 96.8828,
3277
+ "eval_samples_per_second": 2.064,
3278
+ "eval_steps_per_second": 0.516,
3279
+ "step": 218
3280
+ },
3281
+ {
3282
+ "epoch": 7.056,
3283
+ "grad_norm": 2.4415187474081192,
3284
+ "learning_rate": 2e-05,
3285
+ "loss": 0.4898,
3286
+ "step": 219
3287
+ },
3288
+ {
3289
+ "epoch": 7.056,
3290
+ "eval_loss": 0.7104077935218811,
3291
+ "eval_runtime": 96.9482,
3292
+ "eval_samples_per_second": 2.063,
3293
+ "eval_steps_per_second": 0.516,
3294
+ "step": 219
3295
+ },
3296
+ {
3297
+ "epoch": 7.088,
3298
+ "grad_norm": 2.4475533939573153,
3299
+ "learning_rate": 2e-05,
3300
+ "loss": 0.4652,
3301
+ "step": 220
3302
+ },
3303
+ {
3304
+ "epoch": 7.088,
3305
+ "eval_loss": 0.7213549613952637,
3306
+ "eval_runtime": 96.8958,
3307
+ "eval_samples_per_second": 2.064,
3308
+ "eval_steps_per_second": 0.516,
3309
+ "step": 220
3310
+ },
3311
+ {
3312
+ "epoch": 7.12,
3313
+ "grad_norm": 2.604960196075638,
3314
+ "learning_rate": 2e-05,
3315
+ "loss": 0.5096,
3316
+ "step": 221
3317
+ },
3318
+ {
3319
+ "epoch": 7.12,
3320
+ "eval_loss": 0.7343713641166687,
3321
+ "eval_runtime": 97.2891,
3322
+ "eval_samples_per_second": 2.056,
3323
+ "eval_steps_per_second": 0.514,
3324
+ "step": 221
3325
+ },
3326
+ {
3327
+ "epoch": 7.152,
3328
+ "grad_norm": 3.1059901537521135,
3329
+ "learning_rate": 2e-05,
3330
+ "loss": 0.4678,
3331
+ "step": 222
3332
+ },
3333
+ {
3334
+ "epoch": 7.152,
3335
+ "eval_loss": 0.7466915845870972,
3336
+ "eval_runtime": 97.7786,
3337
+ "eval_samples_per_second": 2.045,
3338
+ "eval_steps_per_second": 0.511,
3339
+ "step": 222
3340
+ },
3341
+ {
3342
+ "epoch": 7.184,
3343
+ "grad_norm": 2.6643302536817,
3344
+ "learning_rate": 2e-05,
3345
+ "loss": 0.4807,
3346
+ "step": 223
3347
+ },
3348
+ {
3349
+ "epoch": 7.184,
3350
+ "eval_loss": 0.7558013796806335,
3351
+ "eval_runtime": 97.7416,
3352
+ "eval_samples_per_second": 2.046,
3353
+ "eval_steps_per_second": 0.512,
3354
+ "step": 223
3355
+ },
3356
+ {
3357
+ "epoch": 7.216,
3358
+ "grad_norm": 3.218895177437451,
3359
+ "learning_rate": 2e-05,
3360
+ "loss": 0.4556,
3361
+ "step": 224
3362
+ },
3363
+ {
3364
+ "epoch": 7.216,
3365
+ "eval_loss": 0.7590299844741821,
3366
+ "eval_runtime": 97.7479,
3367
+ "eval_samples_per_second": 2.046,
3368
+ "eval_steps_per_second": 0.512,
3369
+ "step": 224
3370
+ },
3371
+ {
3372
+ "epoch": 7.248,
3373
+ "grad_norm": 3.367892941528959,
3374
+ "learning_rate": 2e-05,
3375
+ "loss": 0.4572,
3376
+ "step": 225
3377
+ },
3378
+ {
3379
+ "epoch": 7.248,
3380
+ "eval_loss": 0.7567412853240967,
3381
+ "eval_runtime": 97.6242,
3382
+ "eval_samples_per_second": 2.049,
3383
+ "eval_steps_per_second": 0.512,
3384
+ "step": 225
3385
+ },
3386
+ {
3387
+ "epoch": 7.28,
3388
+ "grad_norm": 2.860324389327654,
3389
+ "learning_rate": 2e-05,
3390
+ "loss": 0.4989,
3391
+ "step": 226
3392
+ },
3393
+ {
3394
+ "epoch": 7.28,
3395
+ "eval_loss": 0.7538604736328125,
3396
+ "eval_runtime": 97.8342,
3397
+ "eval_samples_per_second": 2.044,
3398
+ "eval_steps_per_second": 0.511,
3399
+ "step": 226
3400
+ },
3401
+ {
3402
+ "epoch": 7.312,
3403
+ "grad_norm": 2.783566742283421,
3404
+ "learning_rate": 2e-05,
3405
+ "loss": 0.5011,
3406
+ "step": 227
3407
+ },
3408
+ {
3409
+ "epoch": 7.312,
3410
+ "eval_loss": 0.7509406805038452,
3411
+ "eval_runtime": 98.0668,
3412
+ "eval_samples_per_second": 2.039,
3413
+ "eval_steps_per_second": 0.51,
3414
+ "step": 227
3415
+ },
3416
+ {
3417
+ "epoch": 7.344,
3418
+ "grad_norm": 2.95622825050015,
3419
+ "learning_rate": 2e-05,
3420
+ "loss": 0.4632,
3421
+ "step": 228
3422
+ },
3423
+ {
3424
+ "epoch": 7.344,
3425
+ "eval_loss": 0.7484157085418701,
3426
+ "eval_runtime": 97.8003,
3427
+ "eval_samples_per_second": 2.045,
3428
+ "eval_steps_per_second": 0.511,
3429
+ "step": 228
3430
+ },
3431
+ {
3432
+ "epoch": 7.376,
3433
+ "grad_norm": 2.868982236682872,
3434
+ "learning_rate": 2e-05,
3435
+ "loss": 0.5131,
3436
+ "step": 229
3437
+ },
3438
+ {
3439
+ "epoch": 7.376,
3440
+ "eval_loss": 0.7442774772644043,
3441
+ "eval_runtime": 97.779,
3442
+ "eval_samples_per_second": 2.045,
3443
+ "eval_steps_per_second": 0.511,
3444
+ "step": 229
3445
+ },
3446
+ {
3447
+ "epoch": 7.408,
3448
+ "grad_norm": 2.8398125186341456,
3449
+ "learning_rate": 2e-05,
3450
+ "loss": 0.4589,
3451
+ "step": 230
3452
+ },
3453
+ {
3454
+ "epoch": 7.408,
3455
+ "eval_loss": 0.7437787055969238,
3456
+ "eval_runtime": 100.3989,
3457
+ "eval_samples_per_second": 1.992,
3458
+ "eval_steps_per_second": 0.498,
3459
+ "step": 230
3460
+ },
3461
+ {
3462
+ "epoch": 7.44,
3463
+ "grad_norm": 2.860835801821795,
3464
+ "learning_rate": 2e-05,
3465
+ "loss": 0.4551,
3466
+ "step": 231
3467
+ },
3468
+ {
3469
+ "epoch": 7.44,
3470
+ "eval_loss": 0.7474150061607361,
3471
+ "eval_runtime": 100.3908,
3472
+ "eval_samples_per_second": 1.992,
3473
+ "eval_steps_per_second": 0.498,
3474
+ "step": 231
3475
+ },
3476
+ {
3477
+ "epoch": 7.4719999999999995,
3478
+ "grad_norm": 3.061812810287673,
3479
+ "learning_rate": 2e-05,
3480
+ "loss": 0.4393,
3481
+ "step": 232
3482
+ },
3483
+ {
3484
+ "epoch": 7.4719999999999995,
3485
+ "eval_loss": 0.751905083656311,
3486
+ "eval_runtime": 98.0564,
3487
+ "eval_samples_per_second": 2.04,
3488
+ "eval_steps_per_second": 0.51,
3489
+ "step": 232
3490
+ },
3491
+ {
3492
+ "epoch": 7.504,
3493
+ "grad_norm": 2.9460244368130764,
3494
+ "learning_rate": 2e-05,
3495
+ "loss": 0.4885,
3496
+ "step": 233
3497
+ },
3498
+ {
3499
+ "epoch": 7.504,
3500
+ "eval_loss": 0.7555700540542603,
3501
+ "eval_runtime": 97.6649,
3502
+ "eval_samples_per_second": 2.048,
3503
+ "eval_steps_per_second": 0.512,
3504
+ "step": 233
3505
+ },
3506
+ {
3507
+ "epoch": 7.536,
3508
+ "grad_norm": 3.195386368100557,
3509
+ "learning_rate": 2e-05,
3510
+ "loss": 0.4825,
3511
+ "step": 234
3512
+ },
3513
+ {
3514
+ "epoch": 7.536,
3515
+ "eval_loss": 0.7574471831321716,
3516
+ "eval_runtime": 97.8436,
3517
+ "eval_samples_per_second": 2.044,
3518
+ "eval_steps_per_second": 0.511,
3519
+ "step": 234
3520
+ },
3521
+ {
3522
+ "epoch": 7.568,
3523
+ "grad_norm": 3.2267422014122853,
3524
+ "learning_rate": 2e-05,
3525
+ "loss": 0.4369,
3526
+ "step": 235
3527
+ },
3528
+ {
3529
+ "epoch": 7.568,
3530
+ "eval_loss": 0.7590253949165344,
3531
+ "eval_runtime": 97.8616,
3532
+ "eval_samples_per_second": 2.044,
3533
+ "eval_steps_per_second": 0.511,
3534
+ "step": 235
3535
+ },
3536
+ {
3537
+ "epoch": 7.608,
3538
+ "grad_norm": 3.0309471686984115,
3539
+ "learning_rate": 2e-05,
3540
+ "loss": 0.4533,
3541
+ "step": 236
3542
+ },
3543
+ {
3544
+ "epoch": 7.608,
3545
+ "eval_loss": 0.7582225203514099,
3546
+ "eval_runtime": 102.1646,
3547
+ "eval_samples_per_second": 1.958,
3548
+ "eval_steps_per_second": 0.489,
3549
+ "step": 236
3550
+ },
3551
+ {
3552
+ "epoch": 7.64,
3553
+ "grad_norm": 3.0386242391155456,
3554
+ "learning_rate": 2e-05,
3555
+ "loss": 0.4557,
3556
+ "step": 237
3557
+ },
3558
+ {
3559
+ "epoch": 7.64,
3560
+ "eval_loss": 0.757209062576294,
3561
+ "eval_runtime": 96.2842,
3562
+ "eval_samples_per_second": 2.077,
3563
+ "eval_steps_per_second": 0.519,
3564
+ "step": 237
3565
+ },
3566
+ {
3567
+ "epoch": 7.672,
3568
+ "grad_norm": 3.595657373206686,
3569
+ "learning_rate": 2e-05,
3570
+ "loss": 0.493,
3571
+ "step": 238
3572
+ },
3573
+ {
3574
+ "epoch": 7.672,
3575
+ "eval_loss": 0.7517231702804565,
3576
+ "eval_runtime": 95.4225,
3577
+ "eval_samples_per_second": 2.096,
3578
+ "eval_steps_per_second": 0.524,
3579
+ "step": 238
3580
+ },
3581
+ {
3582
+ "epoch": 7.704,
3583
+ "grad_norm": 3.246444664818878,
3584
+ "learning_rate": 2e-05,
3585
+ "loss": 0.4663,
3586
+ "step": 239
3587
+ },
3588
+ {
3589
+ "epoch": 7.704,
3590
+ "eval_loss": 0.7478169202804565,
3591
+ "eval_runtime": 95.3771,
3592
+ "eval_samples_per_second": 2.097,
3593
+ "eval_steps_per_second": 0.524,
3594
+ "step": 239
3595
+ },
3596
+ {
3597
+ "epoch": 7.736,
3598
+ "grad_norm": 2.9436367134600827,
3599
+ "learning_rate": 2e-05,
3600
+ "loss": 0.4871,
3601
+ "step": 240
3602
+ },
3603
+ {
3604
+ "epoch": 7.736,
3605
+ "eval_loss": 0.7445845603942871,
3606
+ "eval_runtime": 98.2477,
3607
+ "eval_samples_per_second": 2.036,
3608
+ "eval_steps_per_second": 0.509,
3609
+ "step": 240
3610
+ },
3611
+ {
3612
+ "epoch": 7.768,
3613
+ "grad_norm": 2.8534339094113284,
3614
+ "learning_rate": 2e-05,
3615
+ "loss": 0.5307,
3616
+ "step": 241
3617
+ },
3618
+ {
3619
+ "epoch": 7.768,
3620
+ "eval_loss": 0.7433913946151733,
3621
+ "eval_runtime": 97.3211,
3622
+ "eval_samples_per_second": 2.055,
3623
+ "eval_steps_per_second": 0.514,
3624
+ "step": 241
3625
+ },
3626
+ {
3627
+ "epoch": 7.8,
3628
+ "grad_norm": 3.180683551713395,
3629
+ "learning_rate": 2e-05,
3630
+ "loss": 0.4189,
3631
+ "step": 242
3632
+ },
3633
+ {
3634
+ "epoch": 7.8,
3635
+ "eval_loss": 0.7443408370018005,
3636
+ "eval_runtime": 97.045,
3637
+ "eval_samples_per_second": 2.061,
3638
+ "eval_steps_per_second": 0.515,
3639
+ "step": 242
3640
+ },
3641
+ {
3642
+ "epoch": 7.832,
3643
+ "grad_norm": 2.915485597080642,
3644
+ "learning_rate": 2e-05,
3645
+ "loss": 0.466,
3646
+ "step": 243
3647
+ },
3648
+ {
3649
+ "epoch": 7.832,
3650
+ "eval_loss": 0.7447941303253174,
3651
+ "eval_runtime": 97.3217,
3652
+ "eval_samples_per_second": 2.055,
3653
+ "eval_steps_per_second": 0.514,
3654
+ "step": 243
3655
+ },
3656
+ {
3657
+ "epoch": 7.864,
3658
+ "grad_norm": 3.116167020951512,
3659
+ "learning_rate": 2e-05,
3660
+ "loss": 0.5012,
3661
+ "step": 244
3662
+ },
3663
+ {
3664
+ "epoch": 7.864,
3665
+ "eval_loss": 0.744431734085083,
3666
+ "eval_runtime": 97.2911,
3667
+ "eval_samples_per_second": 2.056,
3668
+ "eval_steps_per_second": 0.514,
3669
+ "step": 244
3670
+ },
3671
+ {
3672
+ "epoch": 7.896,
3673
+ "grad_norm": 3.0808644763492694,
3674
+ "learning_rate": 2e-05,
3675
+ "loss": 0.4809,
3676
+ "step": 245
3677
+ },
3678
+ {
3679
+ "epoch": 7.896,
3680
+ "eval_loss": 0.7447794079780579,
3681
+ "eval_runtime": 100.9572,
3682
+ "eval_samples_per_second": 1.981,
3683
+ "eval_steps_per_second": 0.495,
3684
+ "step": 245
3685
+ },
3686
+ {
3687
+ "epoch": 7.928,
3688
+ "grad_norm": 3.0956122448213836,
3689
+ "learning_rate": 2e-05,
3690
+ "loss": 0.4685,
3691
+ "step": 246
3692
+ },
3693
+ {
3694
+ "epoch": 7.928,
3695
+ "eval_loss": 0.7456656694412231,
3696
+ "eval_runtime": 99.4752,
3697
+ "eval_samples_per_second": 2.011,
3698
+ "eval_steps_per_second": 0.503,
3699
+ "step": 246
3700
+ },
3701
+ {
3702
+ "epoch": 7.96,
3703
+ "grad_norm": 3.1578427063687804,
3704
+ "learning_rate": 2e-05,
3705
+ "loss": 0.5019,
3706
+ "step": 247
3707
+ },
3708
+ {
3709
+ "epoch": 7.96,
3710
+ "eval_loss": 0.7482015490531921,
3711
+ "eval_runtime": 100.5527,
3712
+ "eval_samples_per_second": 1.989,
3713
+ "eval_steps_per_second": 0.497,
3714
+ "step": 247
3715
+ },
3716
+ {
3717
+ "epoch": 7.992,
3718
+ "grad_norm": 3.0384545980818096,
3719
+ "learning_rate": 2e-05,
3720
+ "loss": 0.4667,
3721
+ "step": 248
3722
+ },
3723
+ {
3724
+ "epoch": 7.992,
3725
+ "eval_loss": 0.7531342506408691,
3726
+ "eval_runtime": 96.9014,
3727
+ "eval_samples_per_second": 2.064,
3728
+ "eval_steps_per_second": 0.516,
3729
+ "step": 248
3730
+ }
3731
+ ],
3732
+ "logging_steps": 1.0,
3733
+ "max_steps": 248,
3734
+ "num_input_tokens_seen": 0,
3735
+ "num_train_epochs": 8,
3736
+ "save_steps": 5,
3737
+ "stateful_callbacks": {
3738
+ "TrainerControl": {
3739
+ "args": {
3740
+ "should_epoch_stop": false,
3741
+ "should_evaluate": false,
3742
+ "should_log": false,
3743
+ "should_save": true,
3744
+ "should_training_stop": true
3745
+ },
3746
+ "attributes": {}
3747
+ }
3748
+ },
3749
+ "total_flos": 215944051097600.0,
3750
+ "train_batch_size": 4,
3751
+ "trial_name": null,
3752
+ "trial_params": null
3753
+ }
checkpoint-248/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb674b9c15f7660edd7f2ca5081ae35468486e4f7de4435b1dcf26181111b74d
3
+ size 8184
checkpoint-248/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "freeze_mm_vision_resampler": false,
12
+ "head_dim": 128,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "image_aspect_ratio": "anyres",
16
+ "image_crop_resolution": 224,
17
+ "image_grid_pinpoints": [
18
+ [
19
+ 336,
20
+ 672
21
+ ],
22
+ [
23
+ 672,
24
+ 336
25
+ ],
26
+ [
27
+ 672,
28
+ 672
29
+ ],
30
+ [
31
+ 1008,
32
+ 336
33
+ ],
34
+ [
35
+ 336,
36
+ 1008
37
+ ]
38
+ ],
39
+ "image_split_resolution": 224,
40
+ "initializer_range": 0.02,
41
+ "intermediate_size": 14336,
42
+ "max_position_embeddings": 32768,
43
+ "mlp_bias": false,
44
+ "mm_hidden_size": 1024,
45
+ "mm_patch_merge_type": "spatial_unpad",
46
+ "mm_projector_lr": 2e-05,
47
+ "mm_projector_type": "mlp2x_gelu",
48
+ "mm_resampler_type": null,
49
+ "mm_use_im_patch_token": false,
50
+ "mm_use_im_start_end": false,
51
+ "mm_vision_select_feature": "patch",
52
+ "mm_vision_select_layer": -2,
53
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
54
+ "mm_vision_tower_lr": 2e-06,
55
+ "model_type": "llava_llama",
56
+ "num_attention_heads": 32,
57
+ "num_hidden_layers": 32,
58
+ "num_key_value_heads": 8,
59
+ "pretraining_tp": 1,
60
+ "rms_norm_eps": 1e-05,
61
+ "rope_scaling": null,
62
+ "rope_theta": 1000000.0,
63
+ "sliding_window": null,
64
+ "tie_word_embeddings": false,
65
+ "tokenizer_model_max_length": 4096,
66
+ "tokenizer_padding_side": "right",
67
+ "torch_dtype": "bfloat16",
68
+ "transformers_version": "4.45.2",
69
+ "tune_mm_mlp_adapter": false,
70
+ "tune_mm_vision_resampler": false,
71
+ "unfreeze_mm_vision_tower": true,
72
+ "use_cache": true,
73
+ "use_mm_proj": true,
74
+ "vocab_size": 32000
75
+ }
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f56da5e7651600f211c76f543351b71b7ec5119e0d7ee19bcf199ba7e1e40d1c
3
+ size 41961648
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:135305bb6bf98c6a50c9369d9fb2d05d8eb578e6c55df1eb604eddc6f87d56fc
3
+ size 258787874
trainer_state.json ADDED
@@ -0,0 +1,2367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6666322350502014,
3
+ "best_model_checkpoint": "./checkpoints/llava-v1.6-mistral/checkpoint-125",
4
+ "epoch": 4.992,
5
+ "eval_steps": 1.0,
6
+ "global_step": 155,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.032,
13
+ "grad_norm": 1.3562940564009667,
14
+ "learning_rate": 0.0,
15
+ "loss": 1.2069,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.032,
20
+ "eval_loss": 1.189530849456787,
21
+ "eval_runtime": 100.6384,
22
+ "eval_samples_per_second": 1.987,
23
+ "eval_steps_per_second": 0.497,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.064,
28
+ "grad_norm": 1.3726335882966116,
29
+ "learning_rate": 7.737056144690831e-06,
30
+ "loss": 1.242,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.064,
35
+ "eval_loss": 1.189530849456787,
36
+ "eval_runtime": 95.3713,
37
+ "eval_samples_per_second": 2.097,
38
+ "eval_steps_per_second": 0.524,
39
+ "step": 2
40
+ },
41
+ {
42
+ "epoch": 0.096,
43
+ "grad_norm": 1.267071497789874,
44
+ "learning_rate": 1.2262943855309169e-05,
45
+ "loss": 1.1588,
46
+ "step": 3
47
+ },
48
+ {
49
+ "epoch": 0.096,
50
+ "eval_loss": 1.1675384044647217,
51
+ "eval_runtime": 99.4768,
52
+ "eval_samples_per_second": 2.011,
53
+ "eval_steps_per_second": 0.503,
54
+ "step": 3
55
+ },
56
+ {
57
+ "epoch": 0.128,
58
+ "grad_norm": 1.2066781722006759,
59
+ "learning_rate": 1.5474112289381662e-05,
60
+ "loss": 1.1196,
61
+ "step": 4
62
+ },
63
+ {
64
+ "epoch": 0.128,
65
+ "eval_loss": 1.1391011476516724,
66
+ "eval_runtime": 95.4777,
67
+ "eval_samples_per_second": 2.095,
68
+ "eval_steps_per_second": 0.524,
69
+ "step": 4
70
+ },
71
+ {
72
+ "epoch": 0.16,
73
+ "grad_norm": 1.2746210039866817,
74
+ "learning_rate": 1.7964888034078543e-05,
75
+ "loss": 1.1462,
76
+ "step": 5
77
+ },
78
+ {
79
+ "epoch": 0.16,
80
+ "eval_loss": 1.1023523807525635,
81
+ "eval_runtime": 95.4138,
82
+ "eval_samples_per_second": 2.096,
83
+ "eval_steps_per_second": 0.524,
84
+ "step": 5
85
+ },
86
+ {
87
+ "epoch": 0.192,
88
+ "grad_norm": 1.0552650848120237,
89
+ "learning_rate": 1.9999999999999998e-05,
90
+ "loss": 1.1147,
91
+ "step": 6
92
+ },
93
+ {
94
+ "epoch": 0.192,
95
+ "eval_loss": 1.063745379447937,
96
+ "eval_runtime": 97.6633,
97
+ "eval_samples_per_second": 2.048,
98
+ "eval_steps_per_second": 0.512,
99
+ "step": 6
100
+ },
101
+ {
102
+ "epoch": 0.224,
103
+ "grad_norm": 1.0779287740182022,
104
+ "learning_rate": 2e-05,
105
+ "loss": 1.1773,
106
+ "step": 7
107
+ },
108
+ {
109
+ "epoch": 0.224,
110
+ "eval_loss": 1.024451732635498,
111
+ "eval_runtime": 97.388,
112
+ "eval_samples_per_second": 2.054,
113
+ "eval_steps_per_second": 0.513,
114
+ "step": 7
115
+ },
116
+ {
117
+ "epoch": 0.256,
118
+ "grad_norm": 0.9918200495785524,
119
+ "learning_rate": 2e-05,
120
+ "loss": 1.0434,
121
+ "step": 8
122
+ },
123
+ {
124
+ "epoch": 0.256,
125
+ "eval_loss": 0.9906812906265259,
126
+ "eval_runtime": 97.2423,
127
+ "eval_samples_per_second": 2.057,
128
+ "eval_steps_per_second": 0.514,
129
+ "step": 8
130
+ },
131
+ {
132
+ "epoch": 0.288,
133
+ "grad_norm": 0.9119239308208719,
134
+ "learning_rate": 2e-05,
135
+ "loss": 1.0527,
136
+ "step": 9
137
+ },
138
+ {
139
+ "epoch": 0.288,
140
+ "eval_loss": 0.9626247882843018,
141
+ "eval_runtime": 97.2048,
142
+ "eval_samples_per_second": 2.058,
143
+ "eval_steps_per_second": 0.514,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 0.32,
148
+ "grad_norm": 0.7292073828818868,
149
+ "learning_rate": 2e-05,
150
+ "loss": 0.9801,
151
+ "step": 10
152
+ },
153
+ {
154
+ "epoch": 0.32,
155
+ "eval_loss": 0.9422003030776978,
156
+ "eval_runtime": 97.143,
157
+ "eval_samples_per_second": 2.059,
158
+ "eval_steps_per_second": 0.515,
159
+ "step": 10
160
+ },
161
+ {
162
+ "epoch": 0.352,
163
+ "grad_norm": 0.8195137858461904,
164
+ "learning_rate": 2e-05,
165
+ "loss": 1.0104,
166
+ "step": 11
167
+ },
168
+ {
169
+ "epoch": 0.352,
170
+ "eval_loss": 0.9264165759086609,
171
+ "eval_runtime": 97.2279,
172
+ "eval_samples_per_second": 2.057,
173
+ "eval_steps_per_second": 0.514,
174
+ "step": 11
175
+ },
176
+ {
177
+ "epoch": 0.384,
178
+ "grad_norm": 0.7060464565699565,
179
+ "learning_rate": 2e-05,
180
+ "loss": 0.9764,
181
+ "step": 12
182
+ },
183
+ {
184
+ "epoch": 0.384,
185
+ "eval_loss": 0.9138455986976624,
186
+ "eval_runtime": 97.0954,
187
+ "eval_samples_per_second": 2.06,
188
+ "eval_steps_per_second": 0.515,
189
+ "step": 12
190
+ },
191
+ {
192
+ "epoch": 0.416,
193
+ "grad_norm": 0.8207130544099034,
194
+ "learning_rate": 2e-05,
195
+ "loss": 1.0371,
196
+ "step": 13
197
+ },
198
+ {
199
+ "epoch": 0.416,
200
+ "eval_loss": 0.902658224105835,
201
+ "eval_runtime": 100.8924,
202
+ "eval_samples_per_second": 1.982,
203
+ "eval_steps_per_second": 0.496,
204
+ "step": 13
205
+ },
206
+ {
207
+ "epoch": 0.448,
208
+ "grad_norm": 0.7962544586919155,
209
+ "learning_rate": 2e-05,
210
+ "loss": 0.9455,
211
+ "step": 14
212
+ },
213
+ {
214
+ "epoch": 0.448,
215
+ "eval_loss": 0.8926536440849304,
216
+ "eval_runtime": 100.856,
217
+ "eval_samples_per_second": 1.983,
218
+ "eval_steps_per_second": 0.496,
219
+ "step": 14
220
+ },
221
+ {
222
+ "epoch": 0.48,
223
+ "grad_norm": 0.8246421268957655,
224
+ "learning_rate": 2e-05,
225
+ "loss": 0.9456,
226
+ "step": 15
227
+ },
228
+ {
229
+ "epoch": 0.48,
230
+ "eval_loss": 0.8823295831680298,
231
+ "eval_runtime": 97.0568,
232
+ "eval_samples_per_second": 2.061,
233
+ "eval_steps_per_second": 0.515,
234
+ "step": 15
235
+ },
236
+ {
237
+ "epoch": 0.512,
238
+ "grad_norm": 0.7040845257818263,
239
+ "learning_rate": 2e-05,
240
+ "loss": 0.9283,
241
+ "step": 16
242
+ },
243
+ {
244
+ "epoch": 0.512,
245
+ "eval_loss": 0.8721897602081299,
246
+ "eval_runtime": 98.318,
247
+ "eval_samples_per_second": 2.034,
248
+ "eval_steps_per_second": 0.509,
249
+ "step": 16
250
+ },
251
+ {
252
+ "epoch": 0.544,
253
+ "grad_norm": 0.7904707927869743,
254
+ "learning_rate": 2e-05,
255
+ "loss": 0.9786,
256
+ "step": 17
257
+ },
258
+ {
259
+ "epoch": 0.544,
260
+ "eval_loss": 0.861838698387146,
261
+ "eval_runtime": 101.4487,
262
+ "eval_samples_per_second": 1.971,
263
+ "eval_steps_per_second": 0.493,
264
+ "step": 17
265
+ },
266
+ {
267
+ "epoch": 0.576,
268
+ "grad_norm": 0.7605583546638608,
269
+ "learning_rate": 2e-05,
270
+ "loss": 0.9361,
271
+ "step": 18
272
+ },
273
+ {
274
+ "epoch": 0.576,
275
+ "eval_loss": 0.8519415259361267,
276
+ "eval_runtime": 98.2448,
277
+ "eval_samples_per_second": 2.036,
278
+ "eval_steps_per_second": 0.509,
279
+ "step": 18
280
+ },
281
+ {
282
+ "epoch": 0.608,
283
+ "grad_norm": 0.7005232039249588,
284
+ "learning_rate": 2e-05,
285
+ "loss": 0.8707,
286
+ "step": 19
287
+ },
288
+ {
289
+ "epoch": 0.608,
290
+ "eval_loss": 0.842995822429657,
291
+ "eval_runtime": 98.3165,
292
+ "eval_samples_per_second": 2.034,
293
+ "eval_steps_per_second": 0.509,
294
+ "step": 19
295
+ },
296
+ {
297
+ "epoch": 0.64,
298
+ "grad_norm": 0.653693259495668,
299
+ "learning_rate": 2e-05,
300
+ "loss": 0.9332,
301
+ "step": 20
302
+ },
303
+ {
304
+ "epoch": 0.64,
305
+ "eval_loss": 0.8355565071105957,
306
+ "eval_runtime": 98.237,
307
+ "eval_samples_per_second": 2.036,
308
+ "eval_steps_per_second": 0.509,
309
+ "step": 20
310
+ },
311
+ {
312
+ "epoch": 0.672,
313
+ "grad_norm": 0.6600451404133434,
314
+ "learning_rate": 2e-05,
315
+ "loss": 0.8848,
316
+ "step": 21
317
+ },
318
+ {
319
+ "epoch": 0.672,
320
+ "eval_loss": 0.8297473788261414,
321
+ "eval_runtime": 98.1825,
322
+ "eval_samples_per_second": 2.037,
323
+ "eval_steps_per_second": 0.509,
324
+ "step": 21
325
+ },
326
+ {
327
+ "epoch": 0.704,
328
+ "grad_norm": 0.6666525650519819,
329
+ "learning_rate": 2e-05,
330
+ "loss": 0.9261,
331
+ "step": 22
332
+ },
333
+ {
334
+ "epoch": 0.704,
335
+ "eval_loss": 0.8248497247695923,
336
+ "eval_runtime": 98.1541,
337
+ "eval_samples_per_second": 2.038,
338
+ "eval_steps_per_second": 0.509,
339
+ "step": 22
340
+ },
341
+ {
342
+ "epoch": 0.736,
343
+ "grad_norm": 0.6759718697778233,
344
+ "learning_rate": 2e-05,
345
+ "loss": 1.0103,
346
+ "step": 23
347
+ },
348
+ {
349
+ "epoch": 0.736,
350
+ "eval_loss": 0.8214980959892273,
351
+ "eval_runtime": 98.2494,
352
+ "eval_samples_per_second": 2.036,
353
+ "eval_steps_per_second": 0.509,
354
+ "step": 23
355
+ },
356
+ {
357
+ "epoch": 0.768,
358
+ "grad_norm": 0.651870418762904,
359
+ "learning_rate": 2e-05,
360
+ "loss": 0.9538,
361
+ "step": 24
362
+ },
363
+ {
364
+ "epoch": 0.768,
365
+ "eval_loss": 0.818403959274292,
366
+ "eval_runtime": 97.9476,
367
+ "eval_samples_per_second": 2.042,
368
+ "eval_steps_per_second": 0.51,
369
+ "step": 24
370
+ },
371
+ {
372
+ "epoch": 0.8,
373
+ "grad_norm": 0.6985872283132858,
374
+ "learning_rate": 2e-05,
375
+ "loss": 0.8216,
376
+ "step": 25
377
+ },
378
+ {
379
+ "epoch": 0.8,
380
+ "eval_loss": 0.8149588108062744,
381
+ "eval_runtime": 95.6175,
382
+ "eval_samples_per_second": 2.092,
383
+ "eval_steps_per_second": 0.523,
384
+ "step": 25
385
+ },
386
+ {
387
+ "epoch": 0.832,
388
+ "grad_norm": 0.7801182369335715,
389
+ "learning_rate": 2e-05,
390
+ "loss": 0.8478,
391
+ "step": 26
392
+ },
393
+ {
394
+ "epoch": 0.832,
395
+ "eval_loss": 0.8100517392158508,
396
+ "eval_runtime": 99.7733,
397
+ "eval_samples_per_second": 2.005,
398
+ "eval_steps_per_second": 0.501,
399
+ "step": 26
400
+ },
401
+ {
402
+ "epoch": 0.864,
403
+ "grad_norm": 0.6727766374526198,
404
+ "learning_rate": 2e-05,
405
+ "loss": 0.9015,
406
+ "step": 27
407
+ },
408
+ {
409
+ "epoch": 0.864,
410
+ "eval_loss": 0.8051578998565674,
411
+ "eval_runtime": 95.7387,
412
+ "eval_samples_per_second": 2.089,
413
+ "eval_steps_per_second": 0.522,
414
+ "step": 27
415
+ },
416
+ {
417
+ "epoch": 0.896,
418
+ "grad_norm": 0.7398381040653764,
419
+ "learning_rate": 2e-05,
420
+ "loss": 0.8434,
421
+ "step": 28
422
+ },
423
+ {
424
+ "epoch": 0.896,
425
+ "eval_loss": 0.7998965382575989,
426
+ "eval_runtime": 95.7753,
427
+ "eval_samples_per_second": 2.088,
428
+ "eval_steps_per_second": 0.522,
429
+ "step": 28
430
+ },
431
+ {
432
+ "epoch": 0.928,
433
+ "grad_norm": 0.6837341164482282,
434
+ "learning_rate": 2e-05,
435
+ "loss": 0.9124,
436
+ "step": 29
437
+ },
438
+ {
439
+ "epoch": 0.928,
440
+ "eval_loss": 0.7946869134902954,
441
+ "eval_runtime": 95.933,
442
+ "eval_samples_per_second": 2.085,
443
+ "eval_steps_per_second": 0.521,
444
+ "step": 29
445
+ },
446
+ {
447
+ "epoch": 0.96,
448
+ "grad_norm": 0.7285508052728015,
449
+ "learning_rate": 2e-05,
450
+ "loss": 0.8252,
451
+ "step": 30
452
+ },
453
+ {
454
+ "epoch": 0.96,
455
+ "eval_loss": 0.7891057729721069,
456
+ "eval_runtime": 95.871,
457
+ "eval_samples_per_second": 2.086,
458
+ "eval_steps_per_second": 0.522,
459
+ "step": 30
460
+ },
461
+ {
462
+ "epoch": 0.992,
463
+ "grad_norm": 0.706524788728722,
464
+ "learning_rate": 2e-05,
465
+ "loss": 0.8382,
466
+ "step": 31
467
+ },
468
+ {
469
+ "epoch": 0.992,
470
+ "eval_loss": 0.7835636138916016,
471
+ "eval_runtime": 95.7491,
472
+ "eval_samples_per_second": 2.089,
473
+ "eval_steps_per_second": 0.522,
474
+ "step": 31
475
+ },
476
+ {
477
+ "epoch": 1.024,
478
+ "grad_norm": 0.7392763969473979,
479
+ "learning_rate": 2e-05,
480
+ "loss": 0.8586,
481
+ "step": 32
482
+ },
483
+ {
484
+ "epoch": 1.024,
485
+ "eval_loss": 0.7780101299285889,
486
+ "eval_runtime": 99.7493,
487
+ "eval_samples_per_second": 2.005,
488
+ "eval_steps_per_second": 0.501,
489
+ "step": 32
490
+ },
491
+ {
492
+ "epoch": 1.056,
493
+ "grad_norm": 0.7407143277408553,
494
+ "learning_rate": 2e-05,
495
+ "loss": 0.8438,
496
+ "step": 33
497
+ },
498
+ {
499
+ "epoch": 1.056,
500
+ "eval_loss": 0.7728690505027771,
501
+ "eval_runtime": 95.8863,
502
+ "eval_samples_per_second": 2.086,
503
+ "eval_steps_per_second": 0.521,
504
+ "step": 33
505
+ },
506
+ {
507
+ "epoch": 1.088,
508
+ "grad_norm": 0.7146296362894146,
509
+ "learning_rate": 2e-05,
510
+ "loss": 0.8357,
511
+ "step": 34
512
+ },
513
+ {
514
+ "epoch": 1.088,
515
+ "eval_loss": 0.7683935761451721,
516
+ "eval_runtime": 97.824,
517
+ "eval_samples_per_second": 2.044,
518
+ "eval_steps_per_second": 0.511,
519
+ "step": 34
520
+ },
521
+ {
522
+ "epoch": 1.12,
523
+ "grad_norm": 0.7117142678212836,
524
+ "learning_rate": 2e-05,
525
+ "loss": 0.7884,
526
+ "step": 35
527
+ },
528
+ {
529
+ "epoch": 1.12,
530
+ "eval_loss": 0.7646369338035583,
531
+ "eval_runtime": 95.8185,
532
+ "eval_samples_per_second": 2.087,
533
+ "eval_steps_per_second": 0.522,
534
+ "step": 35
535
+ },
536
+ {
537
+ "epoch": 1.152,
538
+ "grad_norm": 0.7735767817076163,
539
+ "learning_rate": 2e-05,
540
+ "loss": 0.8851,
541
+ "step": 36
542
+ },
543
+ {
544
+ "epoch": 1.152,
545
+ "eval_loss": 0.7616337537765503,
546
+ "eval_runtime": 96.1525,
547
+ "eval_samples_per_second": 2.08,
548
+ "eval_steps_per_second": 0.52,
549
+ "step": 36
550
+ },
551
+ {
552
+ "epoch": 1.184,
553
+ "grad_norm": 0.7386952203362822,
554
+ "learning_rate": 2e-05,
555
+ "loss": 0.7943,
556
+ "step": 37
557
+ },
558
+ {
559
+ "epoch": 1.184,
560
+ "eval_loss": 0.759408712387085,
561
+ "eval_runtime": 96.2772,
562
+ "eval_samples_per_second": 2.077,
563
+ "eval_steps_per_second": 0.519,
564
+ "step": 37
565
+ },
566
+ {
567
+ "epoch": 1.216,
568
+ "grad_norm": 0.6688305832985106,
569
+ "learning_rate": 2e-05,
570
+ "loss": 0.8433,
571
+ "step": 38
572
+ },
573
+ {
574
+ "epoch": 1.216,
575
+ "eval_loss": 0.7577520608901978,
576
+ "eval_runtime": 95.7726,
577
+ "eval_samples_per_second": 2.088,
578
+ "eval_steps_per_second": 0.522,
579
+ "step": 38
580
+ },
581
+ {
582
+ "epoch": 1.248,
583
+ "grad_norm": 0.6861808214947546,
584
+ "learning_rate": 2e-05,
585
+ "loss": 0.8132,
586
+ "step": 39
587
+ },
588
+ {
589
+ "epoch": 1.248,
590
+ "eval_loss": 0.7565059065818787,
591
+ "eval_runtime": 96.1577,
592
+ "eval_samples_per_second": 2.08,
593
+ "eval_steps_per_second": 0.52,
594
+ "step": 39
595
+ },
596
+ {
597
+ "epoch": 1.28,
598
+ "grad_norm": 0.7450886292190618,
599
+ "learning_rate": 2e-05,
600
+ "loss": 0.9067,
601
+ "step": 40
602
+ },
603
+ {
604
+ "epoch": 1.28,
605
+ "eval_loss": 0.7562046647071838,
606
+ "eval_runtime": 95.9983,
607
+ "eval_samples_per_second": 2.083,
608
+ "eval_steps_per_second": 0.521,
609
+ "step": 40
610
+ },
611
+ {
612
+ "epoch": 1.312,
613
+ "grad_norm": 0.7508586498301053,
614
+ "learning_rate": 2e-05,
615
+ "loss": 0.8642,
616
+ "step": 41
617
+ },
618
+ {
619
+ "epoch": 1.312,
620
+ "eval_loss": 0.755351722240448,
621
+ "eval_runtime": 96.6244,
622
+ "eval_samples_per_second": 2.07,
623
+ "eval_steps_per_second": 0.517,
624
+ "step": 41
625
+ },
626
+ {
627
+ "epoch": 1.3439999999999999,
628
+ "grad_norm": 0.7717273184776977,
629
+ "learning_rate": 2e-05,
630
+ "loss": 0.9406,
631
+ "step": 42
632
+ },
633
+ {
634
+ "epoch": 1.3439999999999999,
635
+ "eval_loss": 0.753773033618927,
636
+ "eval_runtime": 100.8127,
637
+ "eval_samples_per_second": 1.984,
638
+ "eval_steps_per_second": 0.496,
639
+ "step": 42
640
+ },
641
+ {
642
+ "epoch": 1.376,
643
+ "grad_norm": 0.7980115302909253,
644
+ "learning_rate": 2e-05,
645
+ "loss": 0.7732,
646
+ "step": 43
647
+ },
648
+ {
649
+ "epoch": 1.376,
650
+ "eval_loss": 0.7511720061302185,
651
+ "eval_runtime": 97.4372,
652
+ "eval_samples_per_second": 2.053,
653
+ "eval_steps_per_second": 0.513,
654
+ "step": 43
655
+ },
656
+ {
657
+ "epoch": 1.408,
658
+ "grad_norm": 0.794554904521861,
659
+ "learning_rate": 2e-05,
660
+ "loss": 0.8962,
661
+ "step": 44
662
+ },
663
+ {
664
+ "epoch": 1.408,
665
+ "eval_loss": 0.7484354376792908,
666
+ "eval_runtime": 96.7621,
667
+ "eval_samples_per_second": 2.067,
668
+ "eval_steps_per_second": 0.517,
669
+ "step": 44
670
+ },
671
+ {
672
+ "epoch": 1.44,
673
+ "grad_norm": 0.7964935137573818,
674
+ "learning_rate": 2e-05,
675
+ "loss": 0.7725,
676
+ "step": 45
677
+ },
678
+ {
679
+ "epoch": 1.44,
680
+ "eval_loss": 0.7454251050949097,
681
+ "eval_runtime": 96.5292,
682
+ "eval_samples_per_second": 2.072,
683
+ "eval_steps_per_second": 0.518,
684
+ "step": 45
685
+ },
686
+ {
687
+ "epoch": 1.472,
688
+ "grad_norm": 0.7477437094752549,
689
+ "learning_rate": 2e-05,
690
+ "loss": 0.8238,
691
+ "step": 46
692
+ },
693
+ {
694
+ "epoch": 1.472,
695
+ "eval_loss": 0.7427694201469421,
696
+ "eval_runtime": 96.4788,
697
+ "eval_samples_per_second": 2.073,
698
+ "eval_steps_per_second": 0.518,
699
+ "step": 46
700
+ },
701
+ {
702
+ "epoch": 1.504,
703
+ "grad_norm": 0.7443339980176984,
704
+ "learning_rate": 2e-05,
705
+ "loss": 0.8273,
706
+ "step": 47
707
+ },
708
+ {
709
+ "epoch": 1.504,
710
+ "eval_loss": 0.7407447099685669,
711
+ "eval_runtime": 96.5686,
712
+ "eval_samples_per_second": 2.071,
713
+ "eval_steps_per_second": 0.518,
714
+ "step": 47
715
+ },
716
+ {
717
+ "epoch": 1.536,
718
+ "grad_norm": 0.7901404920428264,
719
+ "learning_rate": 2e-05,
720
+ "loss": 0.7974,
721
+ "step": 48
722
+ },
723
+ {
724
+ "epoch": 1.536,
725
+ "eval_loss": 0.7381842136383057,
726
+ "eval_runtime": 96.6071,
727
+ "eval_samples_per_second": 2.07,
728
+ "eval_steps_per_second": 0.518,
729
+ "step": 48
730
+ },
731
+ {
732
+ "epoch": 1.568,
733
+ "grad_norm": 0.8677109521747711,
734
+ "learning_rate": 2e-05,
735
+ "loss": 0.8011,
736
+ "step": 49
737
+ },
738
+ {
739
+ "epoch": 1.568,
740
+ "eval_loss": 0.73555588722229,
741
+ "eval_runtime": 96.4189,
742
+ "eval_samples_per_second": 2.074,
743
+ "eval_steps_per_second": 0.519,
744
+ "step": 49
745
+ },
746
+ {
747
+ "epoch": 1.6,
748
+ "grad_norm": 0.8170436579363425,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.7762,
751
+ "step": 50
752
+ },
753
+ {
754
+ "epoch": 1.6,
755
+ "eval_loss": 0.7331439256668091,
756
+ "eval_runtime": 100.5875,
757
+ "eval_samples_per_second": 1.988,
758
+ "eval_steps_per_second": 0.497,
759
+ "step": 50
760
+ },
761
+ {
762
+ "epoch": 1.6320000000000001,
763
+ "grad_norm": 0.8190539924095326,
764
+ "learning_rate": 2e-05,
765
+ "loss": 0.7469,
766
+ "step": 51
767
+ },
768
+ {
769
+ "epoch": 1.6320000000000001,
770
+ "eval_loss": 0.7306647300720215,
771
+ "eval_runtime": 101.1429,
772
+ "eval_samples_per_second": 1.977,
773
+ "eval_steps_per_second": 0.494,
774
+ "step": 51
775
+ },
776
+ {
777
+ "epoch": 1.6640000000000001,
778
+ "grad_norm": 0.8044932603192197,
779
+ "learning_rate": 2e-05,
780
+ "loss": 0.8052,
781
+ "step": 52
782
+ },
783
+ {
784
+ "epoch": 1.6640000000000001,
785
+ "eval_loss": 0.7287429571151733,
786
+ "eval_runtime": 97.25,
787
+ "eval_samples_per_second": 2.057,
788
+ "eval_steps_per_second": 0.514,
789
+ "step": 52
790
+ },
791
+ {
792
+ "epoch": 1.696,
793
+ "grad_norm": 0.7811170846407103,
794
+ "learning_rate": 2e-05,
795
+ "loss": 0.755,
796
+ "step": 53
797
+ },
798
+ {
799
+ "epoch": 1.696,
800
+ "eval_loss": 0.7264651656150818,
801
+ "eval_runtime": 97.67,
802
+ "eval_samples_per_second": 2.048,
803
+ "eval_steps_per_second": 0.512,
804
+ "step": 53
805
+ },
806
+ {
807
+ "epoch": 1.728,
808
+ "grad_norm": 0.808405093976468,
809
+ "learning_rate": 2e-05,
810
+ "loss": 0.7838,
811
+ "step": 54
812
+ },
813
+ {
814
+ "epoch": 1.728,
815
+ "eval_loss": 0.7242828607559204,
816
+ "eval_runtime": 101.2008,
817
+ "eval_samples_per_second": 1.976,
818
+ "eval_steps_per_second": 0.494,
819
+ "step": 54
820
+ },
821
+ {
822
+ "epoch": 1.76,
823
+ "grad_norm": 0.8172106270954758,
824
+ "learning_rate": 2e-05,
825
+ "loss": 0.7123,
826
+ "step": 55
827
+ },
828
+ {
829
+ "epoch": 1.76,
830
+ "eval_loss": 0.7217574119567871,
831
+ "eval_runtime": 99.6145,
832
+ "eval_samples_per_second": 2.008,
833
+ "eval_steps_per_second": 0.502,
834
+ "step": 55
835
+ },
836
+ {
837
+ "epoch": 1.792,
838
+ "grad_norm": 0.83212530473105,
839
+ "learning_rate": 2e-05,
840
+ "loss": 0.8141,
841
+ "step": 56
842
+ },
843
+ {
844
+ "epoch": 1.792,
845
+ "eval_loss": 0.7192932367324829,
846
+ "eval_runtime": 97.1377,
847
+ "eval_samples_per_second": 2.059,
848
+ "eval_steps_per_second": 0.515,
849
+ "step": 56
850
+ },
851
+ {
852
+ "epoch": 1.8239999999999998,
853
+ "grad_norm": 0.8632612959683078,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.8005,
856
+ "step": 57
857
+ },
858
+ {
859
+ "epoch": 1.8239999999999998,
860
+ "eval_loss": 0.717003345489502,
861
+ "eval_runtime": 97.2871,
862
+ "eval_samples_per_second": 2.056,
863
+ "eval_steps_per_second": 0.514,
864
+ "step": 57
865
+ },
866
+ {
867
+ "epoch": 1.8559999999999999,
868
+ "grad_norm": 0.8362081570841255,
869
+ "learning_rate": 2e-05,
870
+ "loss": 0.8254,
871
+ "step": 58
872
+ },
873
+ {
874
+ "epoch": 1.8559999999999999,
875
+ "eval_loss": 0.715446949005127,
876
+ "eval_runtime": 97.5751,
877
+ "eval_samples_per_second": 2.05,
878
+ "eval_steps_per_second": 0.512,
879
+ "step": 58
880
+ },
881
+ {
882
+ "epoch": 1.888,
883
+ "grad_norm": 0.8862779841020042,
884
+ "learning_rate": 2e-05,
885
+ "loss": 0.7949,
886
+ "step": 59
887
+ },
888
+ {
889
+ "epoch": 1.888,
890
+ "eval_loss": 0.7145370244979858,
891
+ "eval_runtime": 97.2406,
892
+ "eval_samples_per_second": 2.057,
893
+ "eval_steps_per_second": 0.514,
894
+ "step": 59
895
+ },
896
+ {
897
+ "epoch": 1.92,
898
+ "grad_norm": 0.875656256488838,
899
+ "learning_rate": 2e-05,
900
+ "loss": 0.8277,
901
+ "step": 60
902
+ },
903
+ {
904
+ "epoch": 1.92,
905
+ "eval_loss": 0.7140547037124634,
906
+ "eval_runtime": 97.1485,
907
+ "eval_samples_per_second": 2.059,
908
+ "eval_steps_per_second": 0.515,
909
+ "step": 60
910
+ },
911
+ {
912
+ "epoch": 1.952,
913
+ "grad_norm": 0.8850690645543244,
914
+ "learning_rate": 2e-05,
915
+ "loss": 0.8117,
916
+ "step": 61
917
+ },
918
+ {
919
+ "epoch": 1.952,
920
+ "eval_loss": 0.7128701210021973,
921
+ "eval_runtime": 97.8906,
922
+ "eval_samples_per_second": 2.043,
923
+ "eval_steps_per_second": 0.511,
924
+ "step": 61
925
+ },
926
+ {
927
+ "epoch": 1.984,
928
+ "grad_norm": 0.8961641824408927,
929
+ "learning_rate": 2e-05,
930
+ "loss": 0.704,
931
+ "step": 62
932
+ },
933
+ {
934
+ "epoch": 1.984,
935
+ "eval_loss": 0.7107064127922058,
936
+ "eval_runtime": 102.2163,
937
+ "eval_samples_per_second": 1.957,
938
+ "eval_steps_per_second": 0.489,
939
+ "step": 62
940
+ },
941
+ {
942
+ "epoch": 2.016,
943
+ "grad_norm": 0.8602247372004996,
944
+ "learning_rate": 2e-05,
945
+ "loss": 0.8016,
946
+ "step": 63
947
+ },
948
+ {
949
+ "epoch": 2.016,
950
+ "eval_loss": 0.7091581225395203,
951
+ "eval_runtime": 98.2114,
952
+ "eval_samples_per_second": 2.036,
953
+ "eval_steps_per_second": 0.509,
954
+ "step": 63
955
+ },
956
+ {
957
+ "epoch": 2.048,
958
+ "grad_norm": 0.7881703384753784,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.7912,
961
+ "step": 64
962
+ },
963
+ {
964
+ "epoch": 2.048,
965
+ "eval_loss": 0.7081906199455261,
966
+ "eval_runtime": 98.9403,
967
+ "eval_samples_per_second": 2.021,
968
+ "eval_steps_per_second": 0.505,
969
+ "step": 64
970
+ },
971
+ {
972
+ "epoch": 2.08,
973
+ "grad_norm": 0.8436680506716614,
974
+ "learning_rate": 2e-05,
975
+ "loss": 0.6965,
976
+ "step": 65
977
+ },
978
+ {
979
+ "epoch": 2.08,
980
+ "eval_loss": 0.7070262432098389,
981
+ "eval_runtime": 97.7451,
982
+ "eval_samples_per_second": 2.046,
983
+ "eval_steps_per_second": 0.512,
984
+ "step": 65
985
+ },
986
+ {
987
+ "epoch": 2.112,
988
+ "grad_norm": 0.8694446846234115,
989
+ "learning_rate": 2e-05,
990
+ "loss": 0.7015,
991
+ "step": 66
992
+ },
993
+ {
994
+ "epoch": 2.112,
995
+ "eval_loss": 0.7055197358131409,
996
+ "eval_runtime": 97.994,
997
+ "eval_samples_per_second": 2.041,
998
+ "eval_steps_per_second": 0.51,
999
+ "step": 66
1000
+ },
1001
+ {
1002
+ "epoch": 2.144,
1003
+ "grad_norm": 0.9518475022730614,
1004
+ "learning_rate": 2e-05,
1005
+ "loss": 0.6952,
1006
+ "step": 67
1007
+ },
1008
+ {
1009
+ "epoch": 2.144,
1010
+ "eval_loss": 0.7035844326019287,
1011
+ "eval_runtime": 98.0296,
1012
+ "eval_samples_per_second": 2.04,
1013
+ "eval_steps_per_second": 0.51,
1014
+ "step": 67
1015
+ },
1016
+ {
1017
+ "epoch": 2.176,
1018
+ "grad_norm": 0.8662066024104106,
1019
+ "learning_rate": 2e-05,
1020
+ "loss": 0.7731,
1021
+ "step": 68
1022
+ },
1023
+ {
1024
+ "epoch": 2.176,
1025
+ "eval_loss": 0.7019283771514893,
1026
+ "eval_runtime": 100.0982,
1027
+ "eval_samples_per_second": 1.998,
1028
+ "eval_steps_per_second": 0.5,
1029
+ "step": 68
1030
+ },
1031
+ {
1032
+ "epoch": 2.208,
1033
+ "grad_norm": 0.9574631942368209,
1034
+ "learning_rate": 2e-05,
1035
+ "loss": 0.7572,
1036
+ "step": 69
1037
+ },
1038
+ {
1039
+ "epoch": 2.208,
1040
+ "eval_loss": 0.7011401653289795,
1041
+ "eval_runtime": 101.9267,
1042
+ "eval_samples_per_second": 1.962,
1043
+ "eval_steps_per_second": 0.491,
1044
+ "step": 69
1045
+ },
1046
+ {
1047
+ "epoch": 2.24,
1048
+ "grad_norm": 0.9477542521472675,
1049
+ "learning_rate": 2e-05,
1050
+ "loss": 0.7393,
1051
+ "step": 70
1052
+ },
1053
+ {
1054
+ "epoch": 2.24,
1055
+ "eval_loss": 0.7006180286407471,
1056
+ "eval_runtime": 101.9672,
1057
+ "eval_samples_per_second": 1.961,
1058
+ "eval_steps_per_second": 0.49,
1059
+ "step": 70
1060
+ },
1061
+ {
1062
+ "epoch": 2.2720000000000002,
1063
+ "grad_norm": 0.9612956116350272,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.7175,
1066
+ "step": 71
1067
+ },
1068
+ {
1069
+ "epoch": 2.2720000000000002,
1070
+ "eval_loss": 0.7002539038658142,
1071
+ "eval_runtime": 101.8755,
1072
+ "eval_samples_per_second": 1.963,
1073
+ "eval_steps_per_second": 0.491,
1074
+ "step": 71
1075
+ },
1076
+ {
1077
+ "epoch": 2.304,
1078
+ "grad_norm": 0.9934844303955727,
1079
+ "learning_rate": 2e-05,
1080
+ "loss": 0.791,
1081
+ "step": 72
1082
+ },
1083
+ {
1084
+ "epoch": 2.304,
1085
+ "eval_loss": 0.6997203230857849,
1086
+ "eval_runtime": 97.9926,
1087
+ "eval_samples_per_second": 2.041,
1088
+ "eval_steps_per_second": 0.51,
1089
+ "step": 72
1090
+ },
1091
+ {
1092
+ "epoch": 2.336,
1093
+ "grad_norm": 1.0540430431227044,
1094
+ "learning_rate": 2e-05,
1095
+ "loss": 0.7542,
1096
+ "step": 73
1097
+ },
1098
+ {
1099
+ "epoch": 2.336,
1100
+ "eval_loss": 0.6988361477851868,
1101
+ "eval_runtime": 100.3704,
1102
+ "eval_samples_per_second": 1.993,
1103
+ "eval_steps_per_second": 0.498,
1104
+ "step": 73
1105
+ },
1106
+ {
1107
+ "epoch": 2.368,
1108
+ "grad_norm": 1.0249397957961794,
1109
+ "learning_rate": 2e-05,
1110
+ "loss": 0.8084,
1111
+ "step": 74
1112
+ },
1113
+ {
1114
+ "epoch": 2.368,
1115
+ "eval_loss": 0.6980065703392029,
1116
+ "eval_runtime": 101.8958,
1117
+ "eval_samples_per_second": 1.963,
1118
+ "eval_steps_per_second": 0.491,
1119
+ "step": 74
1120
+ },
1121
+ {
1122
+ "epoch": 2.4,
1123
+ "grad_norm": 1.0445498365690145,
1124
+ "learning_rate": 2e-05,
1125
+ "loss": 0.7964,
1126
+ "step": 75
1127
+ },
1128
+ {
1129
+ "epoch": 2.4,
1130
+ "eval_loss": 0.6971798539161682,
1131
+ "eval_runtime": 98.1624,
1132
+ "eval_samples_per_second": 2.037,
1133
+ "eval_steps_per_second": 0.509,
1134
+ "step": 75
1135
+ },
1136
+ {
1137
+ "epoch": 2.432,
1138
+ "grad_norm": 0.9685893079320761,
1139
+ "learning_rate": 2e-05,
1140
+ "loss": 0.8047,
1141
+ "step": 76
1142
+ },
1143
+ {
1144
+ "epoch": 2.432,
1145
+ "eval_loss": 0.696861743927002,
1146
+ "eval_runtime": 98.6404,
1147
+ "eval_samples_per_second": 2.028,
1148
+ "eval_steps_per_second": 0.507,
1149
+ "step": 76
1150
+ },
1151
+ {
1152
+ "epoch": 2.464,
1153
+ "grad_norm": 0.9753091933204456,
1154
+ "learning_rate": 2e-05,
1155
+ "loss": 0.684,
1156
+ "step": 77
1157
+ },
1158
+ {
1159
+ "epoch": 2.464,
1160
+ "eval_loss": 0.6957904100418091,
1161
+ "eval_runtime": 98.8766,
1162
+ "eval_samples_per_second": 2.023,
1163
+ "eval_steps_per_second": 0.506,
1164
+ "step": 77
1165
+ },
1166
+ {
1167
+ "epoch": 2.496,
1168
+ "grad_norm": 0.9389149478503764,
1169
+ "learning_rate": 2e-05,
1170
+ "loss": 0.7434,
1171
+ "step": 78
1172
+ },
1173
+ {
1174
+ "epoch": 2.496,
1175
+ "eval_loss": 0.6943306922912598,
1176
+ "eval_runtime": 98.5751,
1177
+ "eval_samples_per_second": 2.029,
1178
+ "eval_steps_per_second": 0.507,
1179
+ "step": 78
1180
+ },
1181
+ {
1182
+ "epoch": 2.528,
1183
+ "grad_norm": 1.0675154845211299,
1184
+ "learning_rate": 2e-05,
1185
+ "loss": 0.7208,
1186
+ "step": 79
1187
+ },
1188
+ {
1189
+ "epoch": 2.528,
1190
+ "eval_loss": 0.6920651197433472,
1191
+ "eval_runtime": 99.0851,
1192
+ "eval_samples_per_second": 2.018,
1193
+ "eval_steps_per_second": 0.505,
1194
+ "step": 79
1195
+ },
1196
+ {
1197
+ "epoch": 2.56,
1198
+ "grad_norm": 0.9937936593307737,
1199
+ "learning_rate": 2e-05,
1200
+ "loss": 0.6948,
1201
+ "step": 80
1202
+ },
1203
+ {
1204
+ "epoch": 2.56,
1205
+ "eval_loss": 0.6899142265319824,
1206
+ "eval_runtime": 98.7974,
1207
+ "eval_samples_per_second": 2.024,
1208
+ "eval_steps_per_second": 0.506,
1209
+ "step": 80
1210
+ },
1211
+ {
1212
+ "epoch": 2.592,
1213
+ "grad_norm": 0.9650832276698476,
1214
+ "learning_rate": 2e-05,
1215
+ "loss": 0.7666,
1216
+ "step": 81
1217
+ },
1218
+ {
1219
+ "epoch": 2.592,
1220
+ "eval_loss": 0.6886695623397827,
1221
+ "eval_runtime": 98.6813,
1222
+ "eval_samples_per_second": 2.027,
1223
+ "eval_steps_per_second": 0.507,
1224
+ "step": 81
1225
+ },
1226
+ {
1227
+ "epoch": 2.624,
1228
+ "grad_norm": 0.9961610958296112,
1229
+ "learning_rate": 2e-05,
1230
+ "loss": 0.7741,
1231
+ "step": 82
1232
+ },
1233
+ {
1234
+ "epoch": 2.624,
1235
+ "eval_loss": 0.687745213508606,
1236
+ "eval_runtime": 98.624,
1237
+ "eval_samples_per_second": 2.028,
1238
+ "eval_steps_per_second": 0.507,
1239
+ "step": 82
1240
+ },
1241
+ {
1242
+ "epoch": 2.656,
1243
+ "grad_norm": 1.0261499699526089,
1244
+ "learning_rate": 2e-05,
1245
+ "loss": 0.7747,
1246
+ "step": 83
1247
+ },
1248
+ {
1249
+ "epoch": 2.656,
1250
+ "eval_loss": 0.6869972944259644,
1251
+ "eval_runtime": 98.9604,
1252
+ "eval_samples_per_second": 2.021,
1253
+ "eval_steps_per_second": 0.505,
1254
+ "step": 83
1255
+ },
1256
+ {
1257
+ "epoch": 2.6879999999999997,
1258
+ "grad_norm": 1.025059237745532,
1259
+ "learning_rate": 2e-05,
1260
+ "loss": 0.7526,
1261
+ "step": 84
1262
+ },
1263
+ {
1264
+ "epoch": 2.6879999999999997,
1265
+ "eval_loss": 0.6862147450447083,
1266
+ "eval_runtime": 98.4387,
1267
+ "eval_samples_per_second": 2.032,
1268
+ "eval_steps_per_second": 0.508,
1269
+ "step": 84
1270
+ },
1271
+ {
1272
+ "epoch": 2.7199999999999998,
1273
+ "grad_norm": 1.1383626266013125,
1274
+ "learning_rate": 2e-05,
1275
+ "loss": 0.683,
1276
+ "step": 85
1277
+ },
1278
+ {
1279
+ "epoch": 2.7199999999999998,
1280
+ "eval_loss": 0.6845572590827942,
1281
+ "eval_runtime": 98.4979,
1282
+ "eval_samples_per_second": 2.03,
1283
+ "eval_steps_per_second": 0.508,
1284
+ "step": 85
1285
+ },
1286
+ {
1287
+ "epoch": 2.752,
1288
+ "grad_norm": 1.0427739679421295,
1289
+ "learning_rate": 2e-05,
1290
+ "loss": 0.7362,
1291
+ "step": 86
1292
+ },
1293
+ {
1294
+ "epoch": 2.752,
1295
+ "eval_loss": 0.683280348777771,
1296
+ "eval_runtime": 103.6707,
1297
+ "eval_samples_per_second": 1.929,
1298
+ "eval_steps_per_second": 0.482,
1299
+ "step": 86
1300
+ },
1301
+ {
1302
+ "epoch": 2.784,
1303
+ "grad_norm": 1.1280129141879938,
1304
+ "learning_rate": 2e-05,
1305
+ "loss": 0.7743,
1306
+ "step": 87
1307
+ },
1308
+ {
1309
+ "epoch": 2.784,
1310
+ "eval_loss": 0.6824235320091248,
1311
+ "eval_runtime": 99.2995,
1312
+ "eval_samples_per_second": 2.014,
1313
+ "eval_steps_per_second": 0.504,
1314
+ "step": 87
1315
+ },
1316
+ {
1317
+ "epoch": 2.816,
1318
+ "grad_norm": 1.0017715497784696,
1319
+ "learning_rate": 2e-05,
1320
+ "loss": 0.7164,
1321
+ "step": 88
1322
+ },
1323
+ {
1324
+ "epoch": 2.816,
1325
+ "eval_loss": 0.6819013357162476,
1326
+ "eval_runtime": 99.5206,
1327
+ "eval_samples_per_second": 2.01,
1328
+ "eval_steps_per_second": 0.502,
1329
+ "step": 88
1330
+ },
1331
+ {
1332
+ "epoch": 2.848,
1333
+ "grad_norm": 1.0769673642284994,
1334
+ "learning_rate": 2e-05,
1335
+ "loss": 0.7013,
1336
+ "step": 89
1337
+ },
1338
+ {
1339
+ "epoch": 2.848,
1340
+ "eval_loss": 0.6820746064186096,
1341
+ "eval_runtime": 96.5197,
1342
+ "eval_samples_per_second": 2.072,
1343
+ "eval_steps_per_second": 0.518,
1344
+ "step": 89
1345
+ },
1346
+ {
1347
+ "epoch": 2.88,
1348
+ "grad_norm": 1.0389167281844591,
1349
+ "learning_rate": 2e-05,
1350
+ "loss": 0.6805,
1351
+ "step": 90
1352
+ },
1353
+ {
1354
+ "epoch": 2.88,
1355
+ "eval_loss": 0.6826525926589966,
1356
+ "eval_runtime": 96.0942,
1357
+ "eval_samples_per_second": 2.081,
1358
+ "eval_steps_per_second": 0.52,
1359
+ "step": 90
1360
+ },
1361
+ {
1362
+ "epoch": 2.912,
1363
+ "grad_norm": 0.9705743838620626,
1364
+ "learning_rate": 2e-05,
1365
+ "loss": 0.7681,
1366
+ "step": 91
1367
+ },
1368
+ {
1369
+ "epoch": 2.912,
1370
+ "eval_loss": 0.6836435198783875,
1371
+ "eval_runtime": 96.2441,
1372
+ "eval_samples_per_second": 2.078,
1373
+ "eval_steps_per_second": 0.52,
1374
+ "step": 91
1375
+ },
1376
+ {
1377
+ "epoch": 2.944,
1378
+ "grad_norm": 1.037823791993831,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 0.7532,
1381
+ "step": 92
1382
+ },
1383
+ {
1384
+ "epoch": 2.944,
1385
+ "eval_loss": 0.6845746040344238,
1386
+ "eval_runtime": 96.2394,
1387
+ "eval_samples_per_second": 2.078,
1388
+ "eval_steps_per_second": 0.52,
1389
+ "step": 92
1390
+ },
1391
+ {
1392
+ "epoch": 2.976,
1393
+ "grad_norm": 1.1323835942146157,
1394
+ "learning_rate": 2e-05,
1395
+ "loss": 0.7171,
1396
+ "step": 93
1397
+ },
1398
+ {
1399
+ "epoch": 2.976,
1400
+ "eval_loss": 0.684663712978363,
1401
+ "eval_runtime": 96.23,
1402
+ "eval_samples_per_second": 2.078,
1403
+ "eval_steps_per_second": 0.52,
1404
+ "step": 93
1405
+ },
1406
+ {
1407
+ "epoch": 3.008,
1408
+ "grad_norm": 1.1957864756602699,
1409
+ "learning_rate": 2e-05,
1410
+ "loss": 0.7166,
1411
+ "step": 94
1412
+ },
1413
+ {
1414
+ "epoch": 3.008,
1415
+ "eval_loss": 0.6830846667289734,
1416
+ "eval_runtime": 96.6549,
1417
+ "eval_samples_per_second": 2.069,
1418
+ "eval_steps_per_second": 0.517,
1419
+ "step": 94
1420
+ },
1421
+ {
1422
+ "epoch": 3.04,
1423
+ "grad_norm": 1.1077357794232636,
1424
+ "learning_rate": 2e-05,
1425
+ "loss": 0.6667,
1426
+ "step": 95
1427
+ },
1428
+ {
1429
+ "epoch": 3.04,
1430
+ "eval_loss": 0.6810076832771301,
1431
+ "eval_runtime": 96.3239,
1432
+ "eval_samples_per_second": 2.076,
1433
+ "eval_steps_per_second": 0.519,
1434
+ "step": 95
1435
+ },
1436
+ {
1437
+ "epoch": 3.072,
1438
+ "grad_norm": 1.1851219157184936,
1439
+ "learning_rate": 2e-05,
1440
+ "loss": 0.7115,
1441
+ "step": 96
1442
+ },
1443
+ {
1444
+ "epoch": 3.072,
1445
+ "eval_loss": 0.6796395778656006,
1446
+ "eval_runtime": 96.9109,
1447
+ "eval_samples_per_second": 2.064,
1448
+ "eval_steps_per_second": 0.516,
1449
+ "step": 96
1450
+ },
1451
+ {
1452
+ "epoch": 3.104,
1453
+ "grad_norm": 1.0812671042616444,
1454
+ "learning_rate": 2e-05,
1455
+ "loss": 0.7333,
1456
+ "step": 97
1457
+ },
1458
+ {
1459
+ "epoch": 3.104,
1460
+ "eval_loss": 0.6794567108154297,
1461
+ "eval_runtime": 96.7403,
1462
+ "eval_samples_per_second": 2.067,
1463
+ "eval_steps_per_second": 0.517,
1464
+ "step": 97
1465
+ },
1466
+ {
1467
+ "epoch": 3.136,
1468
+ "grad_norm": 1.130095597839828,
1469
+ "learning_rate": 2e-05,
1470
+ "loss": 0.6328,
1471
+ "step": 98
1472
+ },
1473
+ {
1474
+ "epoch": 3.136,
1475
+ "eval_loss": 0.6792007684707642,
1476
+ "eval_runtime": 96.8136,
1477
+ "eval_samples_per_second": 2.066,
1478
+ "eval_steps_per_second": 0.516,
1479
+ "step": 98
1480
+ },
1481
+ {
1482
+ "epoch": 3.168,
1483
+ "grad_norm": 1.16102100344116,
1484
+ "learning_rate": 2e-05,
1485
+ "loss": 0.6625,
1486
+ "step": 99
1487
+ },
1488
+ {
1489
+ "epoch": 3.168,
1490
+ "eval_loss": 0.6789132952690125,
1491
+ "eval_runtime": 96.6982,
1492
+ "eval_samples_per_second": 2.068,
1493
+ "eval_steps_per_second": 0.517,
1494
+ "step": 99
1495
+ },
1496
+ {
1497
+ "epoch": 3.2,
1498
+ "grad_norm": 1.226689811951201,
1499
+ "learning_rate": 2e-05,
1500
+ "loss": 0.7522,
1501
+ "step": 100
1502
+ },
1503
+ {
1504
+ "epoch": 3.2,
1505
+ "eval_loss": 0.6786602735519409,
1506
+ "eval_runtime": 96.6253,
1507
+ "eval_samples_per_second": 2.07,
1508
+ "eval_steps_per_second": 0.517,
1509
+ "step": 100
1510
+ },
1511
+ {
1512
+ "epoch": 3.232,
1513
+ "grad_norm": 1.1623462595850367,
1514
+ "learning_rate": 2e-05,
1515
+ "loss": 0.6755,
1516
+ "step": 101
1517
+ },
1518
+ {
1519
+ "epoch": 3.232,
1520
+ "eval_loss": 0.6791322827339172,
1521
+ "eval_runtime": 96.5222,
1522
+ "eval_samples_per_second": 2.072,
1523
+ "eval_steps_per_second": 0.518,
1524
+ "step": 101
1525
+ },
1526
+ {
1527
+ "epoch": 3.2640000000000002,
1528
+ "grad_norm": 1.16303930181089,
1529
+ "learning_rate": 2e-05,
1530
+ "loss": 0.6752,
1531
+ "step": 102
1532
+ },
1533
+ {
1534
+ "epoch": 3.2640000000000002,
1535
+ "eval_loss": 0.680637538433075,
1536
+ "eval_runtime": 96.8789,
1537
+ "eval_samples_per_second": 2.064,
1538
+ "eval_steps_per_second": 0.516,
1539
+ "step": 102
1540
+ },
1541
+ {
1542
+ "epoch": 3.296,
1543
+ "grad_norm": 1.166028046661615,
1544
+ "learning_rate": 2e-05,
1545
+ "loss": 0.6732,
1546
+ "step": 103
1547
+ },
1548
+ {
1549
+ "epoch": 3.296,
1550
+ "eval_loss": 0.6818951964378357,
1551
+ "eval_runtime": 96.7579,
1552
+ "eval_samples_per_second": 2.067,
1553
+ "eval_steps_per_second": 0.517,
1554
+ "step": 103
1555
+ },
1556
+ {
1557
+ "epoch": 3.328,
1558
+ "grad_norm": 1.2872370423601793,
1559
+ "learning_rate": 2e-05,
1560
+ "loss": 0.7713,
1561
+ "step": 104
1562
+ },
1563
+ {
1564
+ "epoch": 3.328,
1565
+ "eval_loss": 0.682328462600708,
1566
+ "eval_runtime": 98.3142,
1567
+ "eval_samples_per_second": 2.034,
1568
+ "eval_steps_per_second": 0.509,
1569
+ "step": 104
1570
+ },
1571
+ {
1572
+ "epoch": 3.36,
1573
+ "grad_norm": 1.1363822202896854,
1574
+ "learning_rate": 2e-05,
1575
+ "loss": 0.7429,
1576
+ "step": 105
1577
+ },
1578
+ {
1579
+ "epoch": 3.36,
1580
+ "eval_loss": 0.6817943453788757,
1581
+ "eval_runtime": 100.7507,
1582
+ "eval_samples_per_second": 1.985,
1583
+ "eval_steps_per_second": 0.496,
1584
+ "step": 105
1585
+ },
1586
+ {
1587
+ "epoch": 3.416,
1588
+ "grad_norm": 1.2711044658075554,
1589
+ "learning_rate": 2e-05,
1590
+ "loss": 0.7057,
1591
+ "step": 106
1592
+ },
1593
+ {
1594
+ "epoch": 3.416,
1595
+ "eval_loss": 0.6794378161430359,
1596
+ "eval_runtime": 100.4096,
1597
+ "eval_samples_per_second": 1.992,
1598
+ "eval_steps_per_second": 0.498,
1599
+ "step": 106
1600
+ },
1601
+ {
1602
+ "epoch": 3.448,
1603
+ "grad_norm": 1.3212295597772596,
1604
+ "learning_rate": 2e-05,
1605
+ "loss": 0.6982,
1606
+ "step": 107
1607
+ },
1608
+ {
1609
+ "epoch": 3.448,
1610
+ "eval_loss": 0.6767404079437256,
1611
+ "eval_runtime": 96.6386,
1612
+ "eval_samples_per_second": 2.07,
1613
+ "eval_steps_per_second": 0.517,
1614
+ "step": 107
1615
+ },
1616
+ {
1617
+ "epoch": 3.48,
1618
+ "grad_norm": 1.2420948881737728,
1619
+ "learning_rate": 2e-05,
1620
+ "loss": 0.7092,
1621
+ "step": 108
1622
+ },
1623
+ {
1624
+ "epoch": 3.48,
1625
+ "eval_loss": 0.6751566529273987,
1626
+ "eval_runtime": 95.1851,
1627
+ "eval_samples_per_second": 2.101,
1628
+ "eval_steps_per_second": 0.525,
1629
+ "step": 108
1630
+ },
1631
+ {
1632
+ "epoch": 3.512,
1633
+ "grad_norm": 1.2965352636029341,
1634
+ "learning_rate": 2e-05,
1635
+ "loss": 0.6715,
1636
+ "step": 109
1637
+ },
1638
+ {
1639
+ "epoch": 3.512,
1640
+ "eval_loss": 0.6750080585479736,
1641
+ "eval_runtime": 95.3479,
1642
+ "eval_samples_per_second": 2.098,
1643
+ "eval_steps_per_second": 0.524,
1644
+ "step": 109
1645
+ },
1646
+ {
1647
+ "epoch": 3.544,
1648
+ "grad_norm": 1.2789534479099607,
1649
+ "learning_rate": 2e-05,
1650
+ "loss": 0.6732,
1651
+ "step": 110
1652
+ },
1653
+ {
1654
+ "epoch": 3.544,
1655
+ "eval_loss": 0.6744334697723389,
1656
+ "eval_runtime": 95.3541,
1657
+ "eval_samples_per_second": 2.097,
1658
+ "eval_steps_per_second": 0.524,
1659
+ "step": 110
1660
+ },
1661
+ {
1662
+ "epoch": 3.576,
1663
+ "grad_norm": 1.3881035995379567,
1664
+ "learning_rate": 2e-05,
1665
+ "loss": 0.6777,
1666
+ "step": 111
1667
+ },
1668
+ {
1669
+ "epoch": 3.576,
1670
+ "eval_loss": 0.6730498671531677,
1671
+ "eval_runtime": 96.972,
1672
+ "eval_samples_per_second": 2.062,
1673
+ "eval_steps_per_second": 0.516,
1674
+ "step": 111
1675
+ },
1676
+ {
1677
+ "epoch": 3.608,
1678
+ "grad_norm": 1.2398078245019133,
1679
+ "learning_rate": 2e-05,
1680
+ "loss": 0.6314,
1681
+ "step": 112
1682
+ },
1683
+ {
1684
+ "epoch": 3.608,
1685
+ "eval_loss": 0.6725335717201233,
1686
+ "eval_runtime": 97.1794,
1687
+ "eval_samples_per_second": 2.058,
1688
+ "eval_steps_per_second": 0.515,
1689
+ "step": 112
1690
+ },
1691
+ {
1692
+ "epoch": 3.64,
1693
+ "grad_norm": 1.3383993031041075,
1694
+ "learning_rate": 2e-05,
1695
+ "loss": 0.6776,
1696
+ "step": 113
1697
+ },
1698
+ {
1699
+ "epoch": 3.64,
1700
+ "eval_loss": 0.6719880104064941,
1701
+ "eval_runtime": 97.2319,
1702
+ "eval_samples_per_second": 2.057,
1703
+ "eval_steps_per_second": 0.514,
1704
+ "step": 113
1705
+ },
1706
+ {
1707
+ "epoch": 3.672,
1708
+ "grad_norm": 1.289557205987285,
1709
+ "learning_rate": 2e-05,
1710
+ "loss": 0.7475,
1711
+ "step": 114
1712
+ },
1713
+ {
1714
+ "epoch": 3.672,
1715
+ "eval_loss": 0.6723533868789673,
1716
+ "eval_runtime": 97.3108,
1717
+ "eval_samples_per_second": 2.055,
1718
+ "eval_steps_per_second": 0.514,
1719
+ "step": 114
1720
+ },
1721
+ {
1722
+ "epoch": 3.7039999999999997,
1723
+ "grad_norm": 1.121644844950096,
1724
+ "learning_rate": 2e-05,
1725
+ "loss": 0.6813,
1726
+ "step": 115
1727
+ },
1728
+ {
1729
+ "epoch": 3.7039999999999997,
1730
+ "eval_loss": 0.673932671546936,
1731
+ "eval_runtime": 97.0919,
1732
+ "eval_samples_per_second": 2.06,
1733
+ "eval_steps_per_second": 0.515,
1734
+ "step": 115
1735
+ },
1736
+ {
1737
+ "epoch": 3.7359999999999998,
1738
+ "grad_norm": 1.5370551636574723,
1739
+ "learning_rate": 2e-05,
1740
+ "loss": 0.7036,
1741
+ "step": 116
1742
+ },
1743
+ {
1744
+ "epoch": 3.7359999999999998,
1745
+ "eval_loss": 0.6737978458404541,
1746
+ "eval_runtime": 97.0064,
1747
+ "eval_samples_per_second": 2.062,
1748
+ "eval_steps_per_second": 0.515,
1749
+ "step": 116
1750
+ },
1751
+ {
1752
+ "epoch": 3.768,
1753
+ "grad_norm": 1.3017720066449985,
1754
+ "learning_rate": 2e-05,
1755
+ "loss": 0.7048,
1756
+ "step": 117
1757
+ },
1758
+ {
1759
+ "epoch": 3.768,
1760
+ "eval_loss": 0.6731936931610107,
1761
+ "eval_runtime": 96.9134,
1762
+ "eval_samples_per_second": 2.064,
1763
+ "eval_steps_per_second": 0.516,
1764
+ "step": 117
1765
+ },
1766
+ {
1767
+ "epoch": 3.8,
1768
+ "grad_norm": 1.3976157986974596,
1769
+ "learning_rate": 2e-05,
1770
+ "loss": 0.6512,
1771
+ "step": 118
1772
+ },
1773
+ {
1774
+ "epoch": 3.8,
1775
+ "eval_loss": 0.6716210842132568,
1776
+ "eval_runtime": 97.4028,
1777
+ "eval_samples_per_second": 2.053,
1778
+ "eval_steps_per_second": 0.513,
1779
+ "step": 118
1780
+ },
1781
+ {
1782
+ "epoch": 3.832,
1783
+ "grad_norm": 1.3982632064891347,
1784
+ "learning_rate": 2e-05,
1785
+ "loss": 0.6481,
1786
+ "step": 119
1787
+ },
1788
+ {
1789
+ "epoch": 3.832,
1790
+ "eval_loss": 0.6690347194671631,
1791
+ "eval_runtime": 97.2096,
1792
+ "eval_samples_per_second": 2.057,
1793
+ "eval_steps_per_second": 0.514,
1794
+ "step": 119
1795
+ },
1796
+ {
1797
+ "epoch": 3.864,
1798
+ "grad_norm": 1.346077433712507,
1799
+ "learning_rate": 2e-05,
1800
+ "loss": 0.6005,
1801
+ "step": 120
1802
+ },
1803
+ {
1804
+ "epoch": 3.864,
1805
+ "eval_loss": 0.667186975479126,
1806
+ "eval_runtime": 97.326,
1807
+ "eval_samples_per_second": 2.055,
1808
+ "eval_steps_per_second": 0.514,
1809
+ "step": 120
1810
+ },
1811
+ {
1812
+ "epoch": 3.896,
1813
+ "grad_norm": 1.3142652448176726,
1814
+ "learning_rate": 2e-05,
1815
+ "loss": 0.6967,
1816
+ "step": 121
1817
+ },
1818
+ {
1819
+ "epoch": 3.896,
1820
+ "eval_loss": 0.6662881970405579,
1821
+ "eval_runtime": 101.7648,
1822
+ "eval_samples_per_second": 1.965,
1823
+ "eval_steps_per_second": 0.491,
1824
+ "step": 121
1825
+ },
1826
+ {
1827
+ "epoch": 3.928,
1828
+ "grad_norm": 1.3368669812290557,
1829
+ "learning_rate": 2e-05,
1830
+ "loss": 0.6954,
1831
+ "step": 122
1832
+ },
1833
+ {
1834
+ "epoch": 3.928,
1835
+ "eval_loss": 0.6659301519393921,
1836
+ "eval_runtime": 98.3123,
1837
+ "eval_samples_per_second": 2.034,
1838
+ "eval_steps_per_second": 0.509,
1839
+ "step": 122
1840
+ },
1841
+ {
1842
+ "epoch": 3.96,
1843
+ "grad_norm": 1.3992228513792793,
1844
+ "learning_rate": 2e-05,
1845
+ "loss": 0.6168,
1846
+ "step": 123
1847
+ },
1848
+ {
1849
+ "epoch": 3.96,
1850
+ "eval_loss": 0.6662861704826355,
1851
+ "eval_runtime": 98.5527,
1852
+ "eval_samples_per_second": 2.029,
1853
+ "eval_steps_per_second": 0.507,
1854
+ "step": 123
1855
+ },
1856
+ {
1857
+ "epoch": 3.992,
1858
+ "grad_norm": 1.403303492690172,
1859
+ "learning_rate": 2e-05,
1860
+ "loss": 0.6818,
1861
+ "step": 124
1862
+ },
1863
+ {
1864
+ "epoch": 3.992,
1865
+ "eval_loss": 0.666582465171814,
1866
+ "eval_runtime": 95.7576,
1867
+ "eval_samples_per_second": 2.089,
1868
+ "eval_steps_per_second": 0.522,
1869
+ "step": 124
1870
+ },
1871
+ {
1872
+ "epoch": 4.024,
1873
+ "grad_norm": 1.37383602466541,
1874
+ "learning_rate": 2e-05,
1875
+ "loss": 0.6539,
1876
+ "step": 125
1877
+ },
1878
+ {
1879
+ "epoch": 4.024,
1880
+ "eval_loss": 0.6666322350502014,
1881
+ "eval_runtime": 95.5774,
1882
+ "eval_samples_per_second": 2.093,
1883
+ "eval_steps_per_second": 0.523,
1884
+ "step": 125
1885
+ },
1886
+ {
1887
+ "epoch": 4.064,
1888
+ "grad_norm": 1.3710348437226973,
1889
+ "learning_rate": 2e-05,
1890
+ "loss": 0.7181,
1891
+ "step": 126
1892
+ },
1893
+ {
1894
+ "epoch": 4.064,
1895
+ "eval_loss": 0.6673327684402466,
1896
+ "eval_runtime": 102.0166,
1897
+ "eval_samples_per_second": 1.96,
1898
+ "eval_steps_per_second": 0.49,
1899
+ "step": 126
1900
+ },
1901
+ {
1902
+ "epoch": 4.096,
1903
+ "grad_norm": 1.297767286241014,
1904
+ "learning_rate": 2e-05,
1905
+ "loss": 0.6452,
1906
+ "step": 127
1907
+ },
1908
+ {
1909
+ "epoch": 4.096,
1910
+ "eval_loss": 0.6687185764312744,
1911
+ "eval_runtime": 95.6988,
1912
+ "eval_samples_per_second": 2.09,
1913
+ "eval_steps_per_second": 0.522,
1914
+ "step": 127
1915
+ },
1916
+ {
1917
+ "epoch": 4.128,
1918
+ "grad_norm": 1.292569885504323,
1919
+ "learning_rate": 2e-05,
1920
+ "loss": 0.6145,
1921
+ "step": 128
1922
+ },
1923
+ {
1924
+ "epoch": 4.128,
1925
+ "eval_loss": 0.6715303063392639,
1926
+ "eval_runtime": 95.465,
1927
+ "eval_samples_per_second": 2.095,
1928
+ "eval_steps_per_second": 0.524,
1929
+ "step": 128
1930
+ },
1931
+ {
1932
+ "epoch": 4.16,
1933
+ "grad_norm": 1.419162300463038,
1934
+ "learning_rate": 2e-05,
1935
+ "loss": 0.6088,
1936
+ "step": 129
1937
+ },
1938
+ {
1939
+ "epoch": 4.16,
1940
+ "eval_loss": 0.675749659538269,
1941
+ "eval_runtime": 97.8829,
1942
+ "eval_samples_per_second": 2.043,
1943
+ "eval_steps_per_second": 0.511,
1944
+ "step": 129
1945
+ },
1946
+ {
1947
+ "epoch": 4.192,
1948
+ "grad_norm": 1.5215794897159234,
1949
+ "learning_rate": 2e-05,
1950
+ "loss": 0.6391,
1951
+ "step": 130
1952
+ },
1953
+ {
1954
+ "epoch": 4.192,
1955
+ "eval_loss": 0.677629828453064,
1956
+ "eval_runtime": 95.4624,
1957
+ "eval_samples_per_second": 2.095,
1958
+ "eval_steps_per_second": 0.524,
1959
+ "step": 130
1960
+ },
1961
+ {
1962
+ "epoch": 4.224,
1963
+ "grad_norm": 1.4684908212096284,
1964
+ "learning_rate": 2e-05,
1965
+ "loss": 0.6102,
1966
+ "step": 131
1967
+ },
1968
+ {
1969
+ "epoch": 4.224,
1970
+ "eval_loss": 0.6779782176017761,
1971
+ "eval_runtime": 97.1518,
1972
+ "eval_samples_per_second": 2.059,
1973
+ "eval_steps_per_second": 0.515,
1974
+ "step": 131
1975
+ },
1976
+ {
1977
+ "epoch": 4.256,
1978
+ "grad_norm": 1.7036283256760842,
1979
+ "learning_rate": 2e-05,
1980
+ "loss": 0.6396,
1981
+ "step": 132
1982
+ },
1983
+ {
1984
+ "epoch": 4.256,
1985
+ "eval_loss": 0.6759344339370728,
1986
+ "eval_runtime": 97.8632,
1987
+ "eval_samples_per_second": 2.044,
1988
+ "eval_steps_per_second": 0.511,
1989
+ "step": 132
1990
+ },
1991
+ {
1992
+ "epoch": 4.288,
1993
+ "grad_norm": 1.6051118551476093,
1994
+ "learning_rate": 2e-05,
1995
+ "loss": 0.6566,
1996
+ "step": 133
1997
+ },
1998
+ {
1999
+ "epoch": 4.288,
2000
+ "eval_loss": 0.673258364200592,
2001
+ "eval_runtime": 97.4448,
2002
+ "eval_samples_per_second": 2.052,
2003
+ "eval_steps_per_second": 0.513,
2004
+ "step": 133
2005
+ },
2006
+ {
2007
+ "epoch": 4.32,
2008
+ "grad_norm": 1.5572448859529642,
2009
+ "learning_rate": 2e-05,
2010
+ "loss": 0.6223,
2011
+ "step": 134
2012
+ },
2013
+ {
2014
+ "epoch": 4.32,
2015
+ "eval_loss": 0.6723945736885071,
2016
+ "eval_runtime": 96.9931,
2017
+ "eval_samples_per_second": 2.062,
2018
+ "eval_steps_per_second": 0.516,
2019
+ "step": 134
2020
+ },
2021
+ {
2022
+ "epoch": 4.352,
2023
+ "grad_norm": 1.607226224281089,
2024
+ "learning_rate": 2e-05,
2025
+ "loss": 0.6168,
2026
+ "step": 135
2027
+ },
2028
+ {
2029
+ "epoch": 4.352,
2030
+ "eval_loss": 0.6719383001327515,
2031
+ "eval_runtime": 97.0819,
2032
+ "eval_samples_per_second": 2.06,
2033
+ "eval_steps_per_second": 0.515,
2034
+ "step": 135
2035
+ },
2036
+ {
2037
+ "epoch": 4.384,
2038
+ "grad_norm": 1.3581330775842726,
2039
+ "learning_rate": 2e-05,
2040
+ "loss": 0.6197,
2041
+ "step": 136
2042
+ },
2043
+ {
2044
+ "epoch": 4.384,
2045
+ "eval_loss": 0.6716668605804443,
2046
+ "eval_runtime": 99.6743,
2047
+ "eval_samples_per_second": 2.007,
2048
+ "eval_steps_per_second": 0.502,
2049
+ "step": 136
2050
+ },
2051
+ {
2052
+ "epoch": 4.416,
2053
+ "grad_norm": 1.6769316310469216,
2054
+ "learning_rate": 2e-05,
2055
+ "loss": 0.638,
2056
+ "step": 137
2057
+ },
2058
+ {
2059
+ "epoch": 4.416,
2060
+ "eval_loss": 0.6708360314369202,
2061
+ "eval_runtime": 95.7987,
2062
+ "eval_samples_per_second": 2.088,
2063
+ "eval_steps_per_second": 0.522,
2064
+ "step": 137
2065
+ },
2066
+ {
2067
+ "epoch": 4.448,
2068
+ "grad_norm": 1.5498003031158447,
2069
+ "learning_rate": 2e-05,
2070
+ "loss": 0.6481,
2071
+ "step": 138
2072
+ },
2073
+ {
2074
+ "epoch": 4.448,
2075
+ "eval_loss": 0.6702771782875061,
2076
+ "eval_runtime": 96.0198,
2077
+ "eval_samples_per_second": 2.083,
2078
+ "eval_steps_per_second": 0.521,
2079
+ "step": 138
2080
+ },
2081
+ {
2082
+ "epoch": 4.48,
2083
+ "grad_norm": 1.551391635180101,
2084
+ "learning_rate": 2e-05,
2085
+ "loss": 0.6396,
2086
+ "step": 139
2087
+ },
2088
+ {
2089
+ "epoch": 4.48,
2090
+ "eval_loss": 0.6709393262863159,
2091
+ "eval_runtime": 95.7365,
2092
+ "eval_samples_per_second": 2.089,
2093
+ "eval_steps_per_second": 0.522,
2094
+ "step": 139
2095
+ },
2096
+ {
2097
+ "epoch": 4.5120000000000005,
2098
+ "grad_norm": 1.534460089474332,
2099
+ "learning_rate": 2e-05,
2100
+ "loss": 0.5738,
2101
+ "step": 140
2102
+ },
2103
+ {
2104
+ "epoch": 4.5120000000000005,
2105
+ "eval_loss": 0.6725634932518005,
2106
+ "eval_runtime": 98.1018,
2107
+ "eval_samples_per_second": 2.039,
2108
+ "eval_steps_per_second": 0.51,
2109
+ "step": 140
2110
+ },
2111
+ {
2112
+ "epoch": 4.5440000000000005,
2113
+ "grad_norm": 1.4820795078494542,
2114
+ "learning_rate": 2e-05,
2115
+ "loss": 0.662,
2116
+ "step": 141
2117
+ },
2118
+ {
2119
+ "epoch": 4.5440000000000005,
2120
+ "eval_loss": 0.6750396490097046,
2121
+ "eval_runtime": 95.8735,
2122
+ "eval_samples_per_second": 2.086,
2123
+ "eval_steps_per_second": 0.522,
2124
+ "step": 141
2125
+ },
2126
+ {
2127
+ "epoch": 4.576,
2128
+ "grad_norm": 1.5013493191075218,
2129
+ "learning_rate": 2e-05,
2130
+ "loss": 0.6571,
2131
+ "step": 142
2132
+ },
2133
+ {
2134
+ "epoch": 4.576,
2135
+ "eval_loss": 0.6773877739906311,
2136
+ "eval_runtime": 95.7522,
2137
+ "eval_samples_per_second": 2.089,
2138
+ "eval_steps_per_second": 0.522,
2139
+ "step": 142
2140
+ },
2141
+ {
2142
+ "epoch": 4.608,
2143
+ "grad_norm": 1.5713746383626521,
2144
+ "learning_rate": 2e-05,
2145
+ "loss": 0.6652,
2146
+ "step": 143
2147
+ },
2148
+ {
2149
+ "epoch": 4.608,
2150
+ "eval_loss": 0.677890419960022,
2151
+ "eval_runtime": 95.6097,
2152
+ "eval_samples_per_second": 2.092,
2153
+ "eval_steps_per_second": 0.523,
2154
+ "step": 143
2155
+ },
2156
+ {
2157
+ "epoch": 4.64,
2158
+ "grad_norm": 1.7992319985289944,
2159
+ "learning_rate": 2e-05,
2160
+ "loss": 0.6846,
2161
+ "step": 144
2162
+ },
2163
+ {
2164
+ "epoch": 4.64,
2165
+ "eval_loss": 0.6761859059333801,
2166
+ "eval_runtime": 95.5647,
2167
+ "eval_samples_per_second": 2.093,
2168
+ "eval_steps_per_second": 0.523,
2169
+ "step": 144
2170
+ },
2171
+ {
2172
+ "epoch": 4.672,
2173
+ "grad_norm": 1.8153564044346968,
2174
+ "learning_rate": 2e-05,
2175
+ "loss": 0.6343,
2176
+ "step": 145
2177
+ },
2178
+ {
2179
+ "epoch": 4.672,
2180
+ "eval_loss": 0.6728916764259338,
2181
+ "eval_runtime": 95.7986,
2182
+ "eval_samples_per_second": 2.088,
2183
+ "eval_steps_per_second": 0.522,
2184
+ "step": 145
2185
+ },
2186
+ {
2187
+ "epoch": 4.704,
2188
+ "grad_norm": 1.7257180198459412,
2189
+ "learning_rate": 2e-05,
2190
+ "loss": 0.6635,
2191
+ "step": 146
2192
+ },
2193
+ {
2194
+ "epoch": 4.704,
2195
+ "eval_loss": 0.670305073261261,
2196
+ "eval_runtime": 96.0378,
2197
+ "eval_samples_per_second": 2.083,
2198
+ "eval_steps_per_second": 0.521,
2199
+ "step": 146
2200
+ },
2201
+ {
2202
+ "epoch": 4.736,
2203
+ "grad_norm": 1.700890150951268,
2204
+ "learning_rate": 2e-05,
2205
+ "loss": 0.6492,
2206
+ "step": 147
2207
+ },
2208
+ {
2209
+ "epoch": 4.736,
2210
+ "eval_loss": 0.6693490743637085,
2211
+ "eval_runtime": 95.7653,
2212
+ "eval_samples_per_second": 2.088,
2213
+ "eval_steps_per_second": 0.522,
2214
+ "step": 147
2215
+ },
2216
+ {
2217
+ "epoch": 4.768,
2218
+ "grad_norm": 1.524592426429662,
2219
+ "learning_rate": 2e-05,
2220
+ "loss": 0.6196,
2221
+ "step": 148
2222
+ },
2223
+ {
2224
+ "epoch": 4.768,
2225
+ "eval_loss": 0.6692916750907898,
2226
+ "eval_runtime": 95.8987,
2227
+ "eval_samples_per_second": 2.086,
2228
+ "eval_steps_per_second": 0.521,
2229
+ "step": 148
2230
+ },
2231
+ {
2232
+ "epoch": 4.8,
2233
+ "grad_norm": 1.765585164658825,
2234
+ "learning_rate": 2e-05,
2235
+ "loss": 0.6634,
2236
+ "step": 149
2237
+ },
2238
+ {
2239
+ "epoch": 4.8,
2240
+ "eval_loss": 0.6684932112693787,
2241
+ "eval_runtime": 96.0068,
2242
+ "eval_samples_per_second": 2.083,
2243
+ "eval_steps_per_second": 0.521,
2244
+ "step": 149
2245
+ },
2246
+ {
2247
+ "epoch": 4.832,
2248
+ "grad_norm": 1.7560172174474262,
2249
+ "learning_rate": 2e-05,
2250
+ "loss": 0.6011,
2251
+ "step": 150
2252
+ },
2253
+ {
2254
+ "epoch": 4.832,
2255
+ "eval_loss": 0.6678715348243713,
2256
+ "eval_runtime": 95.8356,
2257
+ "eval_samples_per_second": 2.087,
2258
+ "eval_steps_per_second": 0.522,
2259
+ "step": 150
2260
+ },
2261
+ {
2262
+ "epoch": 4.864,
2263
+ "grad_norm": 1.5106799279904972,
2264
+ "learning_rate": 2e-05,
2265
+ "loss": 0.6502,
2266
+ "step": 151
2267
+ },
2268
+ {
2269
+ "epoch": 4.864,
2270
+ "eval_loss": 0.6691852807998657,
2271
+ "eval_runtime": 97.5603,
2272
+ "eval_samples_per_second": 2.05,
2273
+ "eval_steps_per_second": 0.513,
2274
+ "step": 151
2275
+ },
2276
+ {
2277
+ "epoch": 4.896,
2278
+ "grad_norm": 1.6515668480995418,
2279
+ "learning_rate": 2e-05,
2280
+ "loss": 0.6207,
2281
+ "step": 152
2282
+ },
2283
+ {
2284
+ "epoch": 4.896,
2285
+ "eval_loss": 0.6714971661567688,
2286
+ "eval_runtime": 96.9472,
2287
+ "eval_samples_per_second": 2.063,
2288
+ "eval_steps_per_second": 0.516,
2289
+ "step": 152
2290
+ },
2291
+ {
2292
+ "epoch": 4.928,
2293
+ "grad_norm": 1.648933444515062,
2294
+ "learning_rate": 2e-05,
2295
+ "loss": 0.6366,
2296
+ "step": 153
2297
+ },
2298
+ {
2299
+ "epoch": 4.928,
2300
+ "eval_loss": 0.6733483672142029,
2301
+ "eval_runtime": 100.8633,
2302
+ "eval_samples_per_second": 1.983,
2303
+ "eval_steps_per_second": 0.496,
2304
+ "step": 153
2305
+ },
2306
+ {
2307
+ "epoch": 4.96,
2308
+ "grad_norm": 1.6749689583250607,
2309
+ "learning_rate": 2e-05,
2310
+ "loss": 0.5815,
2311
+ "step": 154
2312
+ },
2313
+ {
2314
+ "epoch": 4.96,
2315
+ "eval_loss": 0.6746806502342224,
2316
+ "eval_runtime": 100.4948,
2317
+ "eval_samples_per_second": 1.99,
2318
+ "eval_steps_per_second": 0.498,
2319
+ "step": 154
2320
+ },
2321
+ {
2322
+ "epoch": 4.992,
2323
+ "grad_norm": 1.7662303190761401,
2324
+ "learning_rate": 2e-05,
2325
+ "loss": 0.6366,
2326
+ "step": 155
2327
+ },
2328
+ {
2329
+ "epoch": 4.992,
2330
+ "eval_loss": 0.6755189299583435,
2331
+ "eval_runtime": 100.872,
2332
+ "eval_samples_per_second": 1.983,
2333
+ "eval_steps_per_second": 0.496,
2334
+ "step": 155
2335
+ },
2336
+ {
2337
+ "epoch": 4.992,
2338
+ "step": 155,
2339
+ "total_flos": 135390371053568.0,
2340
+ "train_loss": 0.1233276440251258,
2341
+ "train_runtime": 3633.0506,
2342
+ "train_samples_per_second": 1.376,
2343
+ "train_steps_per_second": 0.043
2344
+ }
2345
+ ],
2346
+ "logging_steps": 1.0,
2347
+ "max_steps": 155,
2348
+ "num_input_tokens_seen": 0,
2349
+ "num_train_epochs": 5,
2350
+ "save_steps": 5,
2351
+ "stateful_callbacks": {
2352
+ "TrainerControl": {
2353
+ "args": {
2354
+ "should_epoch_stop": false,
2355
+ "should_evaluate": false,
2356
+ "should_log": false,
2357
+ "should_save": true,
2358
+ "should_training_stop": true
2359
+ },
2360
+ "attributes": {}
2361
+ }
2362
+ },
2363
+ "total_flos": 135390371053568.0,
2364
+ "train_batch_size": 4,
2365
+ "trial_name": null,
2366
+ "trial_params": null
2367
+ }