File size: 6,160 Bytes
f7f9895 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import torch, types, os
import numpy as np
from PIL import Image
import torch.nn as nn
from torch.nn import functional as F
import torchvision as vision
import torchvision.transforms as transforms
np.set_printoptions(precision=4, suppress=True, linewidth=200)
print(f'loading...')
########################################################################################################
model_prefix = 'out-v7c_d8_256-224-13bit-OB32x0.5-201'
input_img = 'kodim24-modified.png'
########################################################################################################
class ToBinary(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return torch.floor(x + 0.5) # no need for noise when we have plenty of data
@staticmethod
def backward(ctx, grad_output):
return grad_output.clone() # pass-through
class R_ENCODER(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
dd = 8
self.Bxx = nn.BatchNorm2d(dd*64)
self.CIN = nn.Conv2d(3, dd, kernel_size=3, padding=1)
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
self.B00 = nn.BatchNorm2d(dd*4)
self.C00 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C01 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.C02 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C03 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.B10 = nn.BatchNorm2d(dd*16)
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.B20 = nn.BatchNorm2d(dd*64)
self.C20 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C21 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.C22 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C23 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.COUT = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
def forward(self, img):
ACT = F.mish
x = self.CIN(img)
xx = self.Bxx(F.pixel_unshuffle(x, 8))
x = x + self.Cx1(ACT(self.Cx0(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
x = x + self.C03(ACT(self.C02(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
x = x + self.C13(ACT(self.C12(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
x = x + self.C23(ACT(self.C22(x)))
x = self.COUT(x + xx)
return torch.sigmoid(x)
class R_DECODER(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
dd = 8
self.CIN = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)
self.B00 = nn.BatchNorm2d(dd*64)
self.C00 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C01 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.C02 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C03 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.B10 = nn.BatchNorm2d(dd*16)
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.B20 = nn.BatchNorm2d(dd*4)
self.C20 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C21 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.C22 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C23 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
self.COUT = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
def forward(self, code):
ACT = F.mish
x = self.CIN(code)
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
x = x + self.C03(ACT(self.C02(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
x = x + self.C13(ACT(self.C12(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
x = x + self.C23(ACT(self.C22(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.Cx1(ACT(self.Cx0(x)))
x = self.COUT(x)
return torch.sigmoid(x)
########################################################################################################
print(f'building model...')
args = types.SimpleNamespace()
args.my_img_bit = 13
encoder = R_ENCODER(args).eval().cuda()
decoder = R_DECODER(args).eval().cuda()
zpow = torch.tensor([2**i for i in range(0,13)]).reshape(13,1,1).cuda().long()
encoder.load_state_dict(torch.load(f'{model_prefix}-E.pth'))
decoder.load_state_dict(torch.load(f'{model_prefix}-D.pth'))
########################################################################################################
print(f'test image...')
img_transform = transforms.Compose([
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Resize((224, 224))
])
with torch.no_grad():
img = img_transform(Image.open(input_img)).unsqueeze(0).cuda()
z = encoder(img)
z = ToBinary.apply(z)
zz = torch.sum(z.squeeze().long() * zpow, dim=0)
print(f'Code shape = {zz.shape}\n{zz.cpu().numpy()}\n')
out = decoder(z)
vision.utils.save_image(out, f"{input_img.split('.')[0]}-out-13bit.png")
|