File size: 9,802 Bytes
f7f9895 502d2e6 bdf1897 79be033 6f9f76f dd4d734 f7f9895 502d2e6 f7f9895 502d2e6 f7f9895 502d2e6 bdf1897 502d2e6 bdf1897 502d2e6 f7f9895 dd4d734 f7f9895 dd4d734 f7f9895 dd4d734 f7f9895 6f9f76f f7f9895 6f9f76f 502d2e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import torch, types, os
import numpy as np
from PIL import Image
import torch.nn as nn
from torch.nn import functional as F
import torchvision as vision
import torchvision.transforms as transforms
np.set_printoptions(precision=4, suppress=True, linewidth=200)
print(f'loading...')
########################################################################################################
# model_prefix = 'out-v7c_d8_256-224-13bit-OB32x0.5-745'
# model_prefix = 'out-v7d_d16_512-224-13bit-OB32x0.5-2487'
model_prefix = 'out-v7d_d32_1024-224-13bit-OB32x0.5-5560'
input_imgs = ['lena.png', 'genshin.png', 'kodim14-modified.png', 'kodim19-modified.png', 'kodim24-modified.png']
device = 'cpu' # cpu cuda
########################################################################################################
class ToBinary(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return torch.floor(x + 0.5) # no need for noise when we have plenty of data
@staticmethod
def backward(ctx, grad_output):
return grad_output.clone() # pass-through
class ResBlock(nn.Module):
def __init__(self, c_x, c_hidden):
super().__init__()
self.B0 = nn.BatchNorm2d(c_x)
self.C0 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
self.C1 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
self.C2 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
self.C3 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
def forward(self, x):
ACT = F.mish
x = x + self.C1(ACT(self.C0(ACT(self.B0(x)))))
x = x + self.C3(ACT(self.C2(x)))
return x
if model_prefix == 'out-v7c_d8_256-224-13bit-OB32x0.5-745':
class R_ENCODER(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
dd = 8
self.Bxx = nn.BatchNorm2d(dd*64)
self.CIN = nn.Conv2d(3, dd, kernel_size=3, padding=1)
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
self.B00 = nn.BatchNorm2d(dd*4)
self.C00 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C01 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.C02 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C03 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.B10 = nn.BatchNorm2d(dd*16)
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.B20 = nn.BatchNorm2d(dd*64)
self.C20 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C21 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.C22 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C23 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.COUT = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
def forward(self, img):
ACT = F.mish
x = self.CIN(img)
xx = self.Bxx(F.pixel_unshuffle(x, 8))
x = x + self.Cx1(ACT(self.Cx0(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
x = x + self.C03(ACT(self.C02(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
x = x + self.C13(ACT(self.C12(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
x = x + self.C23(ACT(self.C22(x)))
x = self.COUT(x + xx)
return torch.sigmoid(x)
class R_DECODER(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
dd = 8
self.CIN = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)
self.B00 = nn.BatchNorm2d(dd*64)
self.C00 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C01 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.C02 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C03 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.B10 = nn.BatchNorm2d(dd*16)
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.B20 = nn.BatchNorm2d(dd*4)
self.C20 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C21 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.C22 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C23 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
self.COUT = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
def forward(self, code):
ACT = F.mish
x = self.CIN(code)
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
x = x + self.C03(ACT(self.C02(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
x = x + self.C13(ACT(self.C12(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
x = x + self.C23(ACT(self.C22(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.Cx1(ACT(self.Cx0(x)))
x = self.COUT(x)
return torch.sigmoid(x)
else:
class R_ENCODER(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
if 'd16_512' in model_prefix:
dd, ee, ff = 16, 64, 512
elif 'd32_1024' in model_prefix:
dd, ee, ff = 32, 128, 1024
self.CXX = nn.Conv2d(3, dd, kernel_size=3, padding=1)
self.BXX = nn.BatchNorm2d(dd)
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
self.R0 = ResBlock(dd*4, ff)
self.R1 = ResBlock(dd*16, ff)
self.R2 = ResBlock(dd*64, ff)
self.CZZ = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
def forward(self, x):
ACT = F.mish
x = self.BXX(self.CXX(x))
x = x + self.CX1(ACT(self.CX0(x)))
x = F.pixel_unshuffle(x, 2)
x = self.R0(x)
x = F.pixel_unshuffle(x, 2)
x = self.R1(x)
x = F.pixel_unshuffle(x, 2)
x = self.R2(x)
x = self.CZZ(x)
return torch.sigmoid(x)
class R_DECODER(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
if 'd16_512' in model_prefix:
dd, ee, ff = 16, 64, 512
elif 'd32_1024' in model_prefix:
dd, ee, ff = 32, 128, 1024
self.CZZ = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)
self.BZZ = nn.BatchNorm2d(dd*64)
self.R0 = ResBlock(dd*64, ff)
self.R1 = ResBlock(dd*16, ff)
self.R2 = ResBlock(dd*4, ff)
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
self.CXX = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
def forward(self, x):
ACT = F.mish
x = self.BZZ(self.CZZ(x))
x = self.R0(x)
x = F.pixel_shuffle(x, 2)
x = self.R1(x)
x = F.pixel_shuffle(x, 2)
x = self.R2(x)
x = F.pixel_shuffle(x, 2)
x = x + self.CX1(ACT(self.CX0(x)))
x = self.CXX(x)
return torch.sigmoid(x)
########################################################################################################
print(f'building model {model_prefix}...')
args = types.SimpleNamespace()
args.my_img_bit = 13
encoder = R_ENCODER(args).eval().to(device)
decoder = R_DECODER(args).eval().to(device)
zpow = torch.tensor([2**i for i in range(0,13)]).reshape(13,1,1).to(device).long()
encoder.load_state_dict(torch.load(f'{model_prefix}-E.pth'))
decoder.load_state_dict(torch.load(f'{model_prefix}-D.pth'))
########################################################################################################
img_transform = transforms.Compose([
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Resize((224, 224))
])
for input_img in input_imgs:
print(f'test image {input_img}...')
with torch.no_grad():
img = img_transform(Image.open(f'img_test/{input_img}')).unsqueeze(0).to(device)
z = encoder(img)
z = ToBinary.apply(z)
zz = torch.sum(z.squeeze().long() * zpow, dim=0)
print(f'Code shape = {zz.shape}\n{zz.cpu().numpy()}\n')
out = decoder(z)
vision.utils.save_image(out, f"img_test/{input_img.split('.')[0]}-{model_prefix}.png")
|