Bo1015 commited on
Commit
60fdaf2
·
verified ·
1 Parent(s): b36e0e1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -21
README.md CHANGED
@@ -3,28 +3,28 @@ tags:
3
  - biology
4
  - medical
5
  ---
6
- # xTrimoPGLM-7B-CLM
7
 
8
  ## Model Introduction
9
 
10
- **xTrimoPGLM-7B-CLM** is the open-source version of the latest generative protein language models designed to generate faithful and diverse protein sequences. The xTrimoPGLM family models are developed by BioMap and Tsinghua University. Along with this, we have released the int4 quantization xTrimoPGLM-100B weights and other xTrimo-series small models, which include: 1B, 3B, and 10B models trained with masked language modeling for protein understanding, and 1B, 3B, and 7B causal language models aimed at protein design.
11
 
12
  ### Out-of-Distribution Perplexity Evaluation
13
 
14
- We evaluated the xTrimoPGLM-CLM (xTCLM) and xTrimoPGLM(100B) models on two OOD test sets, one with sequence identity lower than 0.9 with the training set (<0.9 ID) and the other with sequence identity lower than 0.5 with the training set (<0.5 ID). Each OOD dataset comprises approximately 10,000 protein sequences. The perplexity results, compared against ProGen2-xlarge (6.4B), are as follows (lower is better):
15
 
16
- | Model | ProGen2-xlarge (6.4B) | xTCLM (1B) | xTCLM (3B) | xTCLM (7B) | xT-INT4 (100B) |
17
  |:--------------------|:----------:|:----------:|:----------:|:--------------------:|:--------------------:|
18
- | < 0.9 ID | 9.7 | 9.8 | 9.3 | 8.9 | **8.9** |
19
- | < 0.5 ID | 14.3 | 14.0 | 13.7 | 13.5 | **13.5** |
20
 
21
  ## How to use
22
  ```python
23
  from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
24
  import torch
25
 
26
- tokenizer = AutoTokenizer.from_pretrained("biomap-research/xtrimopglm-7b-clm", trust_remote_code=True, use_fast=True)
27
- model = AutoModelForCausalLM.from_pretrained("biomap-research/xtrimopglm-7b-clm", trust_remote_code=True, torch_dtype=torch.bfloat16)
28
  if torch.cuda.is_available():
29
  model = model.cuda()
30
  model.eval()
@@ -36,12 +36,8 @@ for idx, each in enumerate(prompt):
36
  print(f"Begin generating idx: {idx} with prompt {each}")
37
  output = model.chat(tokenizer, each, **gen_kwargs)
38
  print(f"\nEnd generation with length: {len(output.split())} - seqs: {output}\n")
39
-
40
  ```
41
 
42
-
43
- For more inference or fine-tuning code, datasets, and requirements, please visit our [GitHub page](https://github.com/biomap-research/xTrimoPGLM).
44
-
45
  ## LICENSE
46
 
47
  The code in this repository is open source under the [Creative Commons Attribution-NonCommercial 4.0 International License](./LICENSE).
@@ -49,21 +45,20 @@ The code in this repository is open source under the [Creative Commons Attributi
49
  ## Citations
50
 
51
  If you find our work useful, please consider citing the following paper:
52
- ```latex
53
- @misc{chen2024xtrimopglm,
54
  title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein},
55
  author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others},
56
- year={2024},
57
- eprint={2401.06199},
58
- archivePrefix={arXiv},
59
- primaryClass={cs.CL},
60
- note={arXiv preprint arXiv:2401.06199}
61
  }
62
 
63
- @misc{cheng2024training,
64
  title={Training Compute-Optimal Protein Language Models},
65
  author={Cheng, Xingyi and Chen, Bo and Li, Pan and Gong, Jing and Tang, Jie and Song, Le},
 
 
66
  year={2024},
67
- note={bioRxiv, Cold Spring Harbor Laboratory, pages 2024--06}
68
  }
69
  ```
 
3
  - biology
4
  - medical
5
  ---
6
+ # ProteinGLM-7B-CLM
7
 
8
  ## Model Introduction
9
 
10
+ **ProteinGLM-7B-CLM** is the open-source version of the latest generative protein language models designed to generate faithful and diverse protein sequences. The ProteinGLM family models are developed by Tsinghua University. Along with this, we have released the int4 quantization ProteinGLM weights and other small models, which include: 1B, 3B, and 10B models trained with masked language modeling for protein understanding, and 1B, 3B, and 7B causal language models aimed at protein design.
11
 
12
  ### Out-of-Distribution Perplexity Evaluation
13
 
14
+ We evaluated the ProteinGLM-CLM (PGLM) and ProteinGLM-INT4(100B) models on two OOD test sets, one with sequence identity lower than 0.9 with the training set (<0.9 ID) and the other with sequence identity lower than 0.5 with the training set (<0.5 ID). Each OOD dataset comprises approximately 10,000 protein sequences. The perplexity results, compared against ProGen2-xlarge (6.4B), are as follows (lower is better):
15
 
16
+ | Model | ProGen2-xlarge (6.4B) | PGLM (1B) | PGLM (3B) | PGLM (7B) | PGLM-INT4 (100B) |
17
  |:--------------------|:----------:|:----------:|:----------:|:--------------------:|:--------------------:|
18
+ | < 0.9 ID | 9.7 | 9.8 | 9.3 | 8.9 | **8.7** |
19
+ | < 0.5 ID | 14.3 | 14.0 | 13.7 | 13.5 | **13.3** |
20
 
21
  ## How to use
22
  ```python
23
  from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
24
  import torch
25
 
26
+ tokenizer = AutoTokenizer.from_pretrained("Bo1015/proteinglm-7b-clm", trust_remote_code=True, use_fast=True)
27
+ model = AutoModelForCausalLM.from_pretrained("Bo1015/proteinglm-7b-clm", trust_remote_code=True, torch_dtype=torch.bfloat16)
28
  if torch.cuda.is_available():
29
  model = model.cuda()
30
  model.eval()
 
36
  print(f"Begin generating idx: {idx} with prompt {each}")
37
  output = model.chat(tokenizer, each, **gen_kwargs)
38
  print(f"\nEnd generation with length: {len(output.split())} - seqs: {output}\n")
 
39
  ```
40
 
 
 
 
41
  ## LICENSE
42
 
43
  The code in this repository is open source under the [Creative Commons Attribution-NonCommercial 4.0 International License](./LICENSE).
 
45
  ## Citations
46
 
47
  If you find our work useful, please consider citing the following paper:
48
+ ```
49
+ @article{chen2024xtrimopglm,
50
  title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein},
51
  author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others},
52
+ journal={arXiv preprint arXiv:2401.06199},
53
+ year={2024}
 
 
 
54
  }
55
 
56
+ @article{cheng2024training,
57
  title={Training Compute-Optimal Protein Language Models},
58
  author={Cheng, Xingyi and Chen, Bo and Li, Pan and Gong, Jing and Tang, Jie and Song, Le},
59
+ journal={bioRxiv},
60
+ pages={2024--06},
61
  year={2024},
62
+ publisher={Cold Spring Harbor Laboratory}
63
  }
64
  ```