--- library_name: transformers base_model: - BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated - BoltMonkey/DreadMix tags: - merge - mergekit - lazymergekit - BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated - BoltMonkey/DreadMix pipeline_tag: text-generation --- # SuperNeuralDreadDevil-8b SuperNeuralDreadDevil-8b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated](https://huggingface.co/BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated) * [BoltMonkey/DreadMix](https://huggingface.co/BoltMonkey/DreadMix) ## 🧩 Configuration ```yamlmodels: - model: NousResearch/Meta-Llama-3.1-8B-Instruct - model: BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated parameters: density: 0.53 weight: 0.55 - model: BoltMonkey/DreadMix parameters: density: 0.53 weight: 0.45 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3.1-8B-Instruct parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "BoltMonkey/SuperNeuralDreadDevil-8b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```