Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1571.09 +/- 195.21
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1fdca9d4d300d5f21a509fd2ca1185f33563553080ec822a33bc1dcb29946c0
|
3 |
+
size 129264
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7faf53bee940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faf53bee9d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faf53beea60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faf53beeaf0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7faf53beeb80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7faf53beec10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7faf53beeca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faf53beed30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7faf53beedc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faf53beee50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faf53beeee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7faf53beef70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7faf53bf0880>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680889690700788309,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFXMMb11Mzu/aIBKPkCtAUAMil2/kbMqwN/mAj7QBBq/u6eNP+u5gb6YNeq+0IZLwHGpg79+Z7M/JKPcPfJD2j6Dq2+8tCzyPyLuPD9tgLU8FGZyPnX5gEBIsKc+jof/P4zgqr/q/ro+CHj1v7v8rb8yUu++iltjvuVdDj9lyVU/Wa7Lv8XtNb8IDqs+gf2KvkmAfz4v12w/SmYhPsEYlr+D37S/o4+FP4H0UzzXJAk/4am0vSHSZD8UCj0/VTSVPFJiRL9eYGs/iy8Jv48Ypz91wz8/6v66PtB9BT+7/K2/Ty7APxPVhL9boTa+zPuvPy1H679+inw/oPmrPVNvCcBQF+s+VGG3Pj3IA0AuTTo7DhKxvwVxjz/Dy2W/iiMuP8DnOr/Qsok+5CQ+P+tftrz3dhW/1BO/PxBKxr43eOU/jOCqv+r+uj7QfQU/u/ytv9UJ3r20Qp6/fHgHv8XBuz+kl3m/mZYSP7OWmD1OeJO/Gk3uPEJ5jT8HWFU/aeSJPoKbTb+B0M+/L38GP5RnCT92Y3c+vdOxv/piNj8jeCY/tCiDvxMIkz03Y1q/EfEhPozgqr/q/ro+0H0FP7v8rb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACb32M2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPinovQAAAADu2uW/AAAAAGGnur0AAAAAPHbbPwAAAADMD5s9AAAAABWq+D8AAAAAZW8xvQAAAAAWH/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZHLctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJGLcD0AAAAAj/L1vwAAAAAp3AQ+AAAAAE8d/j8AAAAAap4HvgAAAADbQ+8/AAAAAEwZPTwAAAAA8BnvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ9B+bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8ig4+AAAAALdC878AAAAA9JENvgAAAAAxN/8/AAAAAOCrlr0AAAAAXLD/PwAAAAB4BaG8AAAAAFxn7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshYu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfj+zPQAAAADMqvy/AAAAAMZPmj0AAAAAEO/vPwAAAAA8mBq9AAAAAHq74j8AAAAAGR4CPgAAAAARc96/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwDGakRBeKMAWyUTegDjAF0lEdAqtfcvXbudHV9lChoBkdAmsmSn1nM+2gHTegDaAhHQKrZ7z1bqyJ1fZQoaAZHQJRYAGfPHDJoB03oA2gIR0Cq2sdtEXtTdX2UKGgGR0CYkDNX5nDjaAdN6ANoCEdAqt4SSX+l03V9lChoBkdAlCBOJcgQpWgHTegDaAhHQKrjtBRhttR1fZQoaAZHQJre/Ov+wTxoB03oA2gIR0Cq5qxlg+hXdX2UKGgGR0CLXDUQTVUdaAdN6ANoCEdAqugCv9tMwnV9lChoBkdAmhOYzeoDPmgHTegDaAhHQKrsx2SMcZN1fZQoaAZHQJflT6k6901oB03oA2gIR0Cq8k7H6uW9dX2UKGgGR0CZP22jfvWpaAdN6ANoCEdAqvRF9c8klnV9lChoBkdAlSps8ox59mgHTegDaAhHQKr1FxkupS91fZQoaAZHQJmxwoy9EkVoB03oA2gIR0Cq+EJul41QdX2UKGgGR0CXDmiLVFx5aAdN6ANoCEdAqv3Lsa86FXV9lChoBkdAlwbT+NtIkWgHTegDaAhHQKr/0IrOJLx1fZQoaAZHQJkOTOLR8dBoB03oA2gIR0CrANayKNyYdX2UKGgGR0CQ3diKR+z/aAdN6ANoCEdAqwWzaEi+tnV9lChoBkdAlo+S04R282gHTegDaAhHQKsMcBUaQ3h1fZQoaAZHQIWQJ60IC2doB03oA2gIR0CrDok5ZKWcdX2UKGgGR0CbAepI+W4WaAdN6ANoCEdAqw9hYaHbh3V9lChoBkdAlxSCNGViWmgHTegDaAhHQKsSeoXsPat1fZQoaAZHQJ1bZmBe5WloB03oA2gIR0CrGCaMR6F/dX2UKGgGR0CVZhlkH2RJaAdN6ANoCEdAqxo1MyrPt3V9lChoBkdAlNavOpsGgWgHTegDaAhHQKsbH9JjDsN1fZQoaAZHQJNay5byH21oB03oA2gIR0CrHwmMn7YTdX2UKGgGR0CZRIntv4ucaAdN6ANoCEdAqyb0js2NvXV9lChoBkdAhSK3fAKv3mgHTegDaAhHQKspGxgRbr11fZQoaAZHQJ3HeevpyIZoB03oA2gIR0CrKfh1DBuXdX2UKGgGR0CYNM1f3N9qaAdN6ANoCEdAqy04B3iaRnV9lChoBkdAnFMfQfIS12gHTegDaAhHQKsy6z/IbOx1fZQoaAZHQJ5Fywu/UONoB03oA2gIR0CrNPqQiiZfdX2UKGgGR0CEj/28qWkaaAdN6ANoCEdAqzXdk+X7cnV9lChoBkdAmvE3JcPe6GgHTegDaAhHQKs5GYm9g4R1fZQoaAZHQJytKOXE61doB03oA2gIR0CrQZpC0F8pdX2UKGgGR0CWNRtcv/R3aAdN6ANoCEdAq0OrlJYkmnV9lChoBkdAlHoczhxYJWgHTegDaAhHQKtEiB9Tgl51fZQoaAZHQJYLRNSIgvFoB03oA2gIR0CrR7miQDFIdX2UKGgGR0CXNkHYpUgkaAdN6ANoCEdAq01gmzByj3V9lChoBkdAjQQ2LYPGyWgHTegDaAhHQKtPbEjPfKp1fZQoaAZHQJndhNlAeJZoB03oA2gIR0CrUE6Ae7tidX2UKGgGR0CI+TmjCYTkaAdN6ANoCEdAq1Oa5qdpZnV9lChoBkdAl8RVPN3W4GgHTegDaAhHQKtbIzfrKNh1fZQoaAZHQJi6eW9lEqloB03oA2gIR0CrXklcpsoEdX2UKGgGR0CXKuSflIVeaAdN6ANoCEdAq18oUWVNYnV9lChoBkdAkyoNDhLoOmgHTegDaAhHQKtiXFuNxVB1fZQoaAZHQJYqmDjBEa5oB03oA2gIR0CrZ+M6zVtodX2UKGgGR0CYaPIomXw9aAdN6ANoCEdAq2nd5nlGPXV9lChoBkdAmHAPa6BiC2gHTegDaAhHQKtqtqUu+RJ1fZQoaAZHQIjujel9BrxoB03oA2gIR0Crbeu3trsTdX2UKGgGR0CcoKEB8x9HaAdN6ANoCEdAq3Ppjc2zfXV9lChoBkdAnMXM0YTCcmgHTegDaAhHQKt28/Ho5gh1fZQoaAZHQJHwcCeVcD9oB03oA2gIR0CreFJvP1L8dX2UKGgGR0CcXuD+R5kcaAdN6ANoCEdAq3xrENvwVnV9lChoBkdAkIaK77Kq42gHTegDaAhHQKuCHnEl3Ql1fZQoaAZHQJMNrp/wy7BoB03oA2gIR0CrhCUCJXQudX2UKGgGR0CXvc4WUKRdaAdN6ANoCEdAq4T3FBIFvHV9lChoBkdAm3oQUpNKy2gHTegDaAhHQKuIHmXgLql1fZQoaAZHQJos1l8PWhBoB03oA2gIR0Crjcby6MBIdX2UKGgGR0CWYb7E5yU+aAdN6ANoCEdAq5BAFzMibHV9lChoBkdAm40RoAXEZWgHTegDaAhHQKuRdOfukUN1fZQoaAZHQJmwLJA+pwVoB03oA2gIR0CrlpXtrsSkdX2UKGgGR0CTzeXsw+MZaAdN6ANoCEdAq5ykIgNgB3V9lChoBkdAmptRA4XGfmgHTegDaAhHQKuevqfvnbJ1fZQoaAZHQIWn/PZ7HABoB03oA2gIR0Crn6vWpZOjdX2UKGgGR0Ca4RPrfLs9aAdN6ANoCEdAq6L08vEjxHV9lChoBkdAlS9z3VTaTWgHTegDaAhHQKuokDmKZUl1fZQoaAZHQJuVARWcSXdoB03oA2gIR0CrqqpAdGRWdX2UKGgGR0CbTlWCmMwUaAdN6ANoCEdAq6uUo0ALiXV9lChoBkdAnA1hvJiiI2gHTegDaAhHQKuwW1iONo91fZQoaAZHQJsOaP/7zkJoB03oA2gIR0Crt0qI7/4qdX2UKGgGR0CaY+cTakAQaAdN6ANoCEdAq7lQnv2GqXV9lChoBkdAmdWwN0/4ZmgHTegDaAhHQKu6LNrTH811fZQoaAZHQJhuTbM5fdBoB03oA2gIR0CrvVbdznzQdX2UKGgGR0CW88I6bONYaAdN6ANoCEdAq8Llqk/KQ3V9lChoBkdAnCRGE4//vWgHTegDaAhHQKvE8KtxMnJ1fZQoaAZHQJuvteeFtbdoB03oA2gIR0CrxcLWRRuTdX2UKGgGR0CYcKMFlkH2aAdN6ANoCEdAq8lzbi6xxHV9lChoBkdAgyvXirDIimgHTegDaAhHQKvRqueSSvF1fZQoaAZHQIqlnZIxxkxoB03oA2gIR0Cr08E6DGtIdX2UKGgGR0CODvwm3OObaAdN6ANoCEdAq9SjYoRZlnV9lChoBkdAkhH/VVghKWgHTegDaAhHQKvX4gTRIBl1fZQoaAZHQJThcB5ooNNoB03oA2gIR0Cr3YRAB1cMdX2UKGgGR0CcxUjJdSl4aAdN6ANoCEdAq9+bFqBVdXV9lChoBkdAmPn9nXd0rGgHTegDaAhHQKvgdgWJrL11fZQoaAZHQJGkoD6nBLxoB03oA2gIR0Cr46fBvaUSdX2UKGgGR0CY9TTFl05maAdN6ANoCEdAq+u1y925hHV9lChoBkdAlGezakAPu2gHTegDaAhHQKvuKImgJ1J1fZQoaAZHQJNy18YyfthoB03oA2gIR0Cr7wOQIUrTdX2UKGgGR0CM+JgDRtxdaAdN6ANoCEdAq/JEEA5q/XV9lChoBkdAlnWIdhiLEWgHTegDaAhHQKv32W1MM7V1fZQoaAZHQJFRHdWQwK1oB03oA2gIR0Cr+eBC2MKkdX2UKGgGR0CMtAmZVn27aAdN6ANoCEdAq/q0s6JZXHV9lChoBkdAkW3/IXCTEGgHTegDaAhHQKv93qqwQlN1fZQoaAZHQJYQE9W6shhoB03oA2gIR0CsBLHnEETydX2UKGgGR0CbivZeiSJTaAdN6ANoCEdArAfcI7eVLXV9lChoBkdAk/HS3CsOomgHTegDaAhHQKwJK3BpHqh1fZQoaAZHQJaz+V2Rq49oB03oA2gIR0CsDFhYmsvJdX2UKGgGR0CdL+fWtlqbaAdN6ANoCEdArBIjvTgEU3V9lChoBkdAnOPDoyKvV2gHTegDaAhHQKwUMkleF+N1fZQoaAZHQJhOabnX/YJoB03oA2gIR0CsFQrc9GI9dX2UKGgGR0CbQJjVQQ+VaAdN6ANoCEdArBhDKNhmXnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f3b865dd8d39ade9c9c4cd4127725b8a2636d4a0818f80dfce8a312e50b9e39
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9630b9ea29b06bb4b9bbcb69525d86ce89a3604c88950efdbeaf92a426fc353b
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faf53bee940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faf53bee9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faf53beea60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faf53beeaf0>", "_build": "<function ActorCriticPolicy._build at 0x7faf53beeb80>", "forward": "<function ActorCriticPolicy.forward at 0x7faf53beec10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faf53beeca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faf53beed30>", "_predict": "<function ActorCriticPolicy._predict at 0x7faf53beedc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faf53beee50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faf53beeee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faf53beef70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faf53bf0880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680889690700788309, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFXMMb11Mzu/aIBKPkCtAUAMil2/kbMqwN/mAj7QBBq/u6eNP+u5gb6YNeq+0IZLwHGpg79+Z7M/JKPcPfJD2j6Dq2+8tCzyPyLuPD9tgLU8FGZyPnX5gEBIsKc+jof/P4zgqr/q/ro+CHj1v7v8rb8yUu++iltjvuVdDj9lyVU/Wa7Lv8XtNb8IDqs+gf2KvkmAfz4v12w/SmYhPsEYlr+D37S/o4+FP4H0UzzXJAk/4am0vSHSZD8UCj0/VTSVPFJiRL9eYGs/iy8Jv48Ypz91wz8/6v66PtB9BT+7/K2/Ty7APxPVhL9boTa+zPuvPy1H679+inw/oPmrPVNvCcBQF+s+VGG3Pj3IA0AuTTo7DhKxvwVxjz/Dy2W/iiMuP8DnOr/Qsok+5CQ+P+tftrz3dhW/1BO/PxBKxr43eOU/jOCqv+r+uj7QfQU/u/ytv9UJ3r20Qp6/fHgHv8XBuz+kl3m/mZYSP7OWmD1OeJO/Gk3uPEJ5jT8HWFU/aeSJPoKbTb+B0M+/L38GP5RnCT92Y3c+vdOxv/piNj8jeCY/tCiDvxMIkz03Y1q/EfEhPozgqr/q/ro+0H0FP7v8rb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACb32M2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPinovQAAAADu2uW/AAAAAGGnur0AAAAAPHbbPwAAAADMD5s9AAAAABWq+D8AAAAAZW8xvQAAAAAWH/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZHLctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJGLcD0AAAAAj/L1vwAAAAAp3AQ+AAAAAE8d/j8AAAAAap4HvgAAAADbQ+8/AAAAAEwZPTwAAAAA8BnvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ9B+bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8ig4+AAAAALdC878AAAAA9JENvgAAAAAxN/8/AAAAAOCrlr0AAAAAXLD/PwAAAAB4BaG8AAAAAFxn7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshYu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfj+zPQAAAADMqvy/AAAAAMZPmj0AAAAAEO/vPwAAAAA8mBq9AAAAAHq74j8AAAAAGR4CPgAAAAARc96/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwDGakRBeKMAWyUTegDjAF0lEdAqtfcvXbudHV9lChoBkdAmsmSn1nM+2gHTegDaAhHQKrZ7z1bqyJ1fZQoaAZHQJRYAGfPHDJoB03oA2gIR0Cq2sdtEXtTdX2UKGgGR0CYkDNX5nDjaAdN6ANoCEdAqt4SSX+l03V9lChoBkdAlCBOJcgQpWgHTegDaAhHQKrjtBRhttR1fZQoaAZHQJre/Ov+wTxoB03oA2gIR0Cq5qxlg+hXdX2UKGgGR0CLXDUQTVUdaAdN6ANoCEdAqugCv9tMwnV9lChoBkdAmhOYzeoDPmgHTegDaAhHQKrsx2SMcZN1fZQoaAZHQJflT6k6901oB03oA2gIR0Cq8k7H6uW9dX2UKGgGR0CZP22jfvWpaAdN6ANoCEdAqvRF9c8klnV9lChoBkdAlSps8ox59mgHTegDaAhHQKr1FxkupS91fZQoaAZHQJmxwoy9EkVoB03oA2gIR0Cq+EJul41QdX2UKGgGR0CXDmiLVFx5aAdN6ANoCEdAqv3Lsa86FXV9lChoBkdAlwbT+NtIkWgHTegDaAhHQKr/0IrOJLx1fZQoaAZHQJkOTOLR8dBoB03oA2gIR0CrANayKNyYdX2UKGgGR0CQ3diKR+z/aAdN6ANoCEdAqwWzaEi+tnV9lChoBkdAlo+S04R282gHTegDaAhHQKsMcBUaQ3h1fZQoaAZHQIWQJ60IC2doB03oA2gIR0CrDok5ZKWcdX2UKGgGR0CbAepI+W4WaAdN6ANoCEdAqw9hYaHbh3V9lChoBkdAlxSCNGViWmgHTegDaAhHQKsSeoXsPat1fZQoaAZHQJ1bZmBe5WloB03oA2gIR0CrGCaMR6F/dX2UKGgGR0CVZhlkH2RJaAdN6ANoCEdAqxo1MyrPt3V9lChoBkdAlNavOpsGgWgHTegDaAhHQKsbH9JjDsN1fZQoaAZHQJNay5byH21oB03oA2gIR0CrHwmMn7YTdX2UKGgGR0CZRIntv4ucaAdN6ANoCEdAqyb0js2NvXV9lChoBkdAhSK3fAKv3mgHTegDaAhHQKspGxgRbr11fZQoaAZHQJ3HeevpyIZoB03oA2gIR0CrKfh1DBuXdX2UKGgGR0CYNM1f3N9qaAdN6ANoCEdAqy04B3iaRnV9lChoBkdAnFMfQfIS12gHTegDaAhHQKsy6z/IbOx1fZQoaAZHQJ5Fywu/UONoB03oA2gIR0CrNPqQiiZfdX2UKGgGR0CEj/28qWkaaAdN6ANoCEdAqzXdk+X7cnV9lChoBkdAmvE3JcPe6GgHTegDaAhHQKs5GYm9g4R1fZQoaAZHQJytKOXE61doB03oA2gIR0CrQZpC0F8pdX2UKGgGR0CWNRtcv/R3aAdN6ANoCEdAq0OrlJYkmnV9lChoBkdAlHoczhxYJWgHTegDaAhHQKtEiB9Tgl51fZQoaAZHQJYLRNSIgvFoB03oA2gIR0CrR7miQDFIdX2UKGgGR0CXNkHYpUgkaAdN6ANoCEdAq01gmzByj3V9lChoBkdAjQQ2LYPGyWgHTegDaAhHQKtPbEjPfKp1fZQoaAZHQJndhNlAeJZoB03oA2gIR0CrUE6Ae7tidX2UKGgGR0CI+TmjCYTkaAdN6ANoCEdAq1Oa5qdpZnV9lChoBkdAl8RVPN3W4GgHTegDaAhHQKtbIzfrKNh1fZQoaAZHQJi6eW9lEqloB03oA2gIR0CrXklcpsoEdX2UKGgGR0CXKuSflIVeaAdN6ANoCEdAq18oUWVNYnV9lChoBkdAkyoNDhLoOmgHTegDaAhHQKtiXFuNxVB1fZQoaAZHQJYqmDjBEa5oB03oA2gIR0CrZ+M6zVtodX2UKGgGR0CYaPIomXw9aAdN6ANoCEdAq2nd5nlGPXV9lChoBkdAmHAPa6BiC2gHTegDaAhHQKtqtqUu+RJ1fZQoaAZHQIjujel9BrxoB03oA2gIR0Crbeu3trsTdX2UKGgGR0CcoKEB8x9HaAdN6ANoCEdAq3Ppjc2zfXV9lChoBkdAnMXM0YTCcmgHTegDaAhHQKt28/Ho5gh1fZQoaAZHQJHwcCeVcD9oB03oA2gIR0CreFJvP1L8dX2UKGgGR0CcXuD+R5kcaAdN6ANoCEdAq3xrENvwVnV9lChoBkdAkIaK77Kq42gHTegDaAhHQKuCHnEl3Ql1fZQoaAZHQJMNrp/wy7BoB03oA2gIR0CrhCUCJXQudX2UKGgGR0CXvc4WUKRdaAdN6ANoCEdAq4T3FBIFvHV9lChoBkdAm3oQUpNKy2gHTegDaAhHQKuIHmXgLql1fZQoaAZHQJos1l8PWhBoB03oA2gIR0Crjcby6MBIdX2UKGgGR0CWYb7E5yU+aAdN6ANoCEdAq5BAFzMibHV9lChoBkdAm40RoAXEZWgHTegDaAhHQKuRdOfukUN1fZQoaAZHQJmwLJA+pwVoB03oA2gIR0CrlpXtrsSkdX2UKGgGR0CTzeXsw+MZaAdN6ANoCEdAq5ykIgNgB3V9lChoBkdAmptRA4XGfmgHTegDaAhHQKuevqfvnbJ1fZQoaAZHQIWn/PZ7HABoB03oA2gIR0Crn6vWpZOjdX2UKGgGR0Ca4RPrfLs9aAdN6ANoCEdAq6L08vEjxHV9lChoBkdAlS9z3VTaTWgHTegDaAhHQKuokDmKZUl1fZQoaAZHQJuVARWcSXdoB03oA2gIR0CrqqpAdGRWdX2UKGgGR0CbTlWCmMwUaAdN6ANoCEdAq6uUo0ALiXV9lChoBkdAnA1hvJiiI2gHTegDaAhHQKuwW1iONo91fZQoaAZHQJsOaP/7zkJoB03oA2gIR0Crt0qI7/4qdX2UKGgGR0CaY+cTakAQaAdN6ANoCEdAq7lQnv2GqXV9lChoBkdAmdWwN0/4ZmgHTegDaAhHQKu6LNrTH811fZQoaAZHQJhuTbM5fdBoB03oA2gIR0CrvVbdznzQdX2UKGgGR0CW88I6bONYaAdN6ANoCEdAq8Llqk/KQ3V9lChoBkdAnCRGE4//vWgHTegDaAhHQKvE8KtxMnJ1fZQoaAZHQJuvteeFtbdoB03oA2gIR0CrxcLWRRuTdX2UKGgGR0CYcKMFlkH2aAdN6ANoCEdAq8lzbi6xxHV9lChoBkdAgyvXirDIimgHTegDaAhHQKvRqueSSvF1fZQoaAZHQIqlnZIxxkxoB03oA2gIR0Cr08E6DGtIdX2UKGgGR0CODvwm3OObaAdN6ANoCEdAq9SjYoRZlnV9lChoBkdAkhH/VVghKWgHTegDaAhHQKvX4gTRIBl1fZQoaAZHQJThcB5ooNNoB03oA2gIR0Cr3YRAB1cMdX2UKGgGR0CcxUjJdSl4aAdN6ANoCEdAq9+bFqBVdXV9lChoBkdAmPn9nXd0rGgHTegDaAhHQKvgdgWJrL11fZQoaAZHQJGkoD6nBLxoB03oA2gIR0Cr46fBvaUSdX2UKGgGR0CY9TTFl05maAdN6ANoCEdAq+u1y925hHV9lChoBkdAlGezakAPu2gHTegDaAhHQKvuKImgJ1J1fZQoaAZHQJNy18YyfthoB03oA2gIR0Cr7wOQIUrTdX2UKGgGR0CM+JgDRtxdaAdN6ANoCEdAq/JEEA5q/XV9lChoBkdAlnWIdhiLEWgHTegDaAhHQKv32W1MM7V1fZQoaAZHQJFRHdWQwK1oB03oA2gIR0Cr+eBC2MKkdX2UKGgGR0CMtAmZVn27aAdN6ANoCEdAq/q0s6JZXHV9lChoBkdAkW3/IXCTEGgHTegDaAhHQKv93qqwQlN1fZQoaAZHQJYQE9W6shhoB03oA2gIR0CsBLHnEETydX2UKGgGR0CbivZeiSJTaAdN6ANoCEdArAfcI7eVLXV9lChoBkdAk/HS3CsOomgHTegDaAhHQKwJK3BpHqh1fZQoaAZHQJaz+V2Rq49oB03oA2gIR0CsDFhYmsvJdX2UKGgGR0CdL+fWtlqbaAdN6ANoCEdArBIjvTgEU3V9lChoBkdAnOPDoyKvV2gHTegDaAhHQKwUMkleF+N1fZQoaAZHQJhOabnX/YJoB03oA2gIR0CsFQrc9GI9dX2UKGgGR0CbQJjVQQ+VaAdN6ANoCEdArBhDKNhmXnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83b22b7fcc261abdc6487ef68e923e172635231b7e13e991d94d0b812f58cf41
|
3 |
+
size 1070333
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1571.0874974519909, "std_reward": 195.20949686486267, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-07T19:36:01.978694"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb6dedc709f7f947df64e8e3152fbf038962a85e6f5e9c2b2c261993804b3286
|
3 |
+
size 2136
|