--- license: mit ---
We released all of our checkpoints used in [LoRA-Flow](https://aclanthology.org/2024.acl-long.695.pdf) which has been accepted to ACL 2024 main conference. # Summary > In this repo, we release LoRA modules and the gate of 7B models trained in our paper in HuggingFace format. # Introduction LoRA-Flow provides an efficient way to fuse different LoRA modules. The following picture shows our proposed method, we use layer-wise fusion gates to facilitate dynamic LoRA fusion, which project input hidden states of each layer into fusion weights. LoRA-flow can be applied into [Llama-7b backbone](https://huggingface.co/meta-llama/Llama-2-7b) . For more details, please refer to our paper. ![1.jpg](https://cdn-uploads.huggingface.co/production/uploads/64d99f6cd7e30889c6c477b4/ifiu1FTHilrmUkD4FKkgV.jpeg) # Training Data ## Data used for LoRA modules For the language LoRA modules: we use the 52K training samples from [Okapi](https://aclanthology.org/2023.emnlp-demo.28) for each language, respectively. For the math LoRA module: we use [Metamath](https://arxiv.org/abs/2309.12284) that is comprised of 395K mathematical problems and the corresponding solutions in English. For the code LoRA module: we use the Magicoder dataset [Magicoder](https://arxiv.org/abs/2312.02120), which consists of 186K code generation problems and the corresponding solutions in English. ## Data used for gates We use gates to fuse different LoRA modules. We employ few-shot training and have released our training data. For more details, please refer to our GitHub. # Results We have released the results for LoRAs and LoRA-Flow | **Method** | | **MGSM (Math)** | | | | **HumanEval (Code)** | | | | |-----------------------|-------|-------------------------------|---------|---------|---------|----------------------------------|---------|---------|---------| | | | **Zh** | **Ru** | **Es** | **Avg.**| **Zh** | **Ru** | **Es** | **Avg.**| | **Base Model** | | 4.4 | 3.2 | 2.4 | 3.3 | 0.0 | 0.0 | 2.4 | 0.8 | | **Single LoRA** | Lang | 5.2 | 3.6 | 3.6 | 4.1 | 12.2 | 14.0 | 10.4 | 12.2 | | | Task | 26.8 | 32.8 | 41.2 | 33.6 | 18.3 | 23.2 | 21.9 | 21.1 | | **LoRA Fusion** | Avg | 12.8 | 10.4 | 18.4 | 13.9 | 17.1 | 17.7 | 18.3 | 17.7 | | | LoRA-Hub | 20.8 | 28.4 | 36.8 | 28.7 | 19.5 | 21.3 | 20.1 | 20.3 | | | LoRA-Flow | **33.2** | **37.6**| **42.0**| **37.6**| **20.7** | **23.8**| **23.2**| **22.6**|Method | MGSM (Math) | HumanEval (Code) | ||||||
---|---|---|---|---|---|---|---|---|
Zh | Ru | Es | Avg. | Zh | Ru | Es | Avg. | |
Base Model | 4.4 | 3.2 | 2.4 | 3.3 | 0.0 | 0.0 | 2.4 | 0.8 |
Single LoRA | 5.2 | 3.6 | 3.6 | 4.1 | 12.2 | 14.0 | 10.4 | 12.2 |
26.8 | 32.8 | 41.2 | 33.6 | 18.3 | 23.2 | 21.9 | 21.1 | |
LoRA Fusion | 12.8 | 10.4 | 18.4 | 13.9 | 17.1 | 17.7 | 18.3 | 17.7 |
20.8 | 28.4 | 36.8 | 28.7 | 19.5 | 21.3 | 20.1 | 20.3 | |
33.2 | 37.6 | 42.0 | 37.6 | 20.7 | 23.8 | 23.2 | 22.6 |