File size: 8,838 Bytes
7b9818b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23bb9d9
7b9818b
 
 
 
 
23bb9d9
7b9818b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Bert VITS2
"""

import os
from typing import Dict
import re

from transformers.tokenization_utils_base import BatchEncoding
from transformers.processing_utils import ProcessorMixin
from transformers.utils import logging
from transformers import AutoTokenizer, PreTrainedTokenizer

logger = logging.get_logger(__name__)

def chinese_number_to_words(text):
    out = ""
    if text[0] == "-":
        out += "負"
        text = text[1:]
    elif text[0] == "+":
        out += "正"
        text = text[1:]
    if "." in text:
        integer, decimal = text.split(".")
        out += chinese_number_to_words(integer)
        out += "點"
        for c in decimal:
            out += chinese_number_to_words(c)
        return out
    chinese_num = ["零", "一", "二", "三", "四", "五", "六", "七", "八", "九"]
    length = len(text)
    for i, c in enumerate(text):
        if c == "0" and out[-1] not in chinese_num:
            if i != length - 1 or length == 1:
                out += chinese_num[0]
        else:
            out += chinese_num[int(c)]
        if length - i == 2:
            out += "十"
        elif length - i == 3:
            out += "百"
        elif length - i == 4:
            out += "千"
        elif length - i == 5:
            out += "萬"
        elif length - i == 6:
            out += "十"
        elif length - i == 7:
            out += "百"
        elif length - i == 8:
            out += "千"
        elif length - i == 9:
            out += "億"
        elif length - i == 10:
            out += "十"
        elif length - i == 11:
            out += "百"
        elif length - i == 12:
            out += "千"
        elif length - i == 13:
            out += "兆"
        elif length - i == 14:
            out += "十"
        elif length - i == 15:
            out += "百"
        elif length - i == 16:
            out += "千"
        elif length - i == 17:
            out += "京"
    return out


class BertVits2Processor(ProcessorMixin):
    r"""
    Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor.

    Args:
        tokenizers ([`PreTrainedTokenizer`]):
            An instance of [`PreTrainedTokenizer`].
        bert_tokenizer ([`PreTrainedTokenizer`]):
            An instance of [`PreTrainedTokenizer`].

    """

    tokenizer_class = "AutoTokenizer"
    attributes = ["tokenizer"]

    def __init__(self, tokenizer: PreTrainedTokenizer, bert_tokenizers: Dict[str, PreTrainedTokenizer]):
        super().__init__(tokenizer)
        self.__bert_tokenizers = bert_tokenizers

    @property
    def bert_tokenizers(self):
        return self.__bert_tokenizers

    def preprocess_stage1(self, text, language=None):
        # normalize punctuation
        text = text.replace(",", ",").replace("。", ".").replace("?", "?").replace("!", "!").replace("...", "…")
        # normalize whitespace
        text = re.sub(r"\s+", " ", text).strip()
        # convert number to words
        if language == "zh":
            text = re.sub(r"[+-]?\d+", lambda x: chinese_number_to_words(x.group()), text)
        return text

    def preprocess_stage2(self, text, language=None):
        # normalize whitespace
        text = re.sub(r"\s", 'SP', text).strip()
        return text

    def __call__(
        self,
        text=None,
        language=None,
        return_tensors="pt",
        max_length=256,
        add_special_tokens=True,
        return_attention_mask=True,
        padding="longest",
        **kwargs,
    ):
        """
        Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs`
        arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a
        voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded
        to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.

        Returns:
            Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the
            `tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type.
        """

        if language is None:
            raise ValueError("The language argument is required for BertVits2Processor.")
        
        if language not in self.bert_tokenizers:
            raise ValueError(f"Language '{language}' not supported by BertVits2Processor.")
        
        bert_text = self.preprocess_stage1(text, language)
        g2p_text = self.preprocess_stage2(bert_text, language)

        phone_text, tone_ids, lang_ids, word2ph = self.tokenizer.convert_g2p(g2p_text, language, add_special_tokens)

        encoded_text = self.tokenizer(
            phone_text,
            return_tensors=return_tensors,
            padding=padding,
            max_length=max_length,
            return_attention_mask=return_attention_mask,
            **kwargs,
        )

        bert_tokenizer = self.bert_tokenizers[language]
        bert_encoded_text = bert_tokenizer(
            bert_text,
            return_tensors=return_tensors,
            padding=padding,
            max_length=max_length,
            return_attention_mask=return_attention_mask,
            add_special_tokens=add_special_tokens,
            return_token_type_ids=False,
            **kwargs,
        )

        return BatchEncoding({
            **encoded_text,
            **{ f"bert_{k}": v for k, v in bert_encoded_text.items() },
            "tone_ids": [tone_ids],
            "language_ids": [lang_ids],
            "word_to_phoneme": [word2ph],
        }, tensor_type=return_tensors)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
        processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs)
        processor_dict['bert_tokenizers'] = {
            key: AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder=val)
            for key, val in processor_dict['bert_tokenizers'].items()
        }
        return cls.from_args_and_dict(args, processor_dict, **kwargs)

    def save_pretrained(
        self,
        save_directory,
        **kwargs,
    ):
        """
        Save the processor to the `save_directory` directory. If the processor has been created from a
        repository, the method will push the model to the `save_directory` repository.

        Args:
            save_directory (`str`):
                Directory where the processor will be saved.
            push_to_hub (`bool`, `optional`, defaults to `False`):
                Whether or not to push the model to the Hugging Face Hub after saving it.
            kwargs:
                Additional attributes to be saved with the processor.
        """
        os.makedirs(save_directory, exist_ok=True)
        for language, tokenizer in self.bert_tokenizers.items():
            tokenizer.save_pretrained(os.path.join(save_directory, f"bert_{language}"))
        bert_tokenizers = self.bert_tokenizers
        self.bert_tokenizers = {language: f"bert_{language}" for language in self.bert_tokenizers}
        outputs = super().save_pretrained(save_directory, **kwargs)
        self.bert_tokenizers = bert_tokenizers
        return outputs