File size: 9,141 Bytes
7b9818b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Bert VITS2
"""
import os
from typing import Optional, Dict
import re
from transformers.tokenization_utils_base import BatchEncoding
from transformers.processing_utils import ProcessorMixin
from transformers.utils import logging
from transformers.utils.hub import get_file_from_repo
from transformers import AutoTokenizer, PreTrainedTokenizer, TOKENIZER_MAPPING
# inject BertVits2Tokenizer
import transformers
from tokenization_bert_vits2 import BertVits2Tokenizer
transformers.BertVits2Tokenizer = BertVits2Tokenizer
TOKENIZER_MAPPING.register("bert_vits2", "BertVits2Tokenizer")
logger = logging.get_logger(__name__)
def chinese_number_to_words(text):
out = ""
if text[0] == "-":
out += "負"
text = text[1:]
elif text[0] == "+":
out += "正"
text = text[1:]
if "." in text:
integer, decimal = text.split(".")
out += chinese_number_to_words(integer)
out += "點"
for c in decimal:
out += chinese_number_to_words(c)
return out
chinese_num = ["零", "一", "二", "三", "四", "五", "六", "七", "八", "九"]
length = len(text)
for i, c in enumerate(text):
if c == "0" and out[-1] not in chinese_num:
if i != length - 1 or length == 1:
out += chinese_num[0]
else:
out += chinese_num[int(c)]
if length - i == 2:
out += "十"
elif length - i == 3:
out += "百"
elif length - i == 4:
out += "千"
elif length - i == 5:
out += "萬"
elif length - i == 6:
out += "十"
elif length - i == 7:
out += "百"
elif length - i == 8:
out += "千"
elif length - i == 9:
out += "億"
elif length - i == 10:
out += "十"
elif length - i == 11:
out += "百"
elif length - i == 12:
out += "千"
elif length - i == 13:
out += "兆"
elif length - i == 14:
out += "十"
elif length - i == 15:
out += "百"
elif length - i == 16:
out += "千"
elif length - i == 17:
out += "京"
return out
class BertVits2Processor(ProcessorMixin):
r"""
Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor.
Args:
tokenizers ([`PreTrainedTokenizer`]):
An instance of [`PreTrainedTokenizer`].
bert_tokenizer ([`PreTrainedTokenizer`]):
An instance of [`PreTrainedTokenizer`].
"""
tokenizer_class = "AutoTokenizer"
attributes = ["tokenizer"]
def __init__(self, tokenizer: PreTrainedTokenizer, bert_tokenizers: Dict[str, PreTrainedTokenizer]):
super().__init__(tokenizer)
self.__bert_tokenizers = bert_tokenizers
@property
def bert_tokenizers(self):
return self.__bert_tokenizers
def preprocess_stage1(self, text, language=None):
# normalize punctuation
text = text.replace(",", ",").replace("。", ".").replace("?", "?").replace("!", "!").replace("...", "…")
# normalize whitespace
text = re.sub(r"\s+", " ", text).strip()
# convert number to words
if language == "zh":
text = re.sub(r"[+-]?\d+", lambda x: chinese_number_to_words(x.group()), text)
return text
def preprocess_stage2(self, text, language=None):
# normalize whitespace
text = re.sub(r"\s", 'SP', text).strip()
return text
def __call__(
self,
text=None,
language=None,
return_tensors="pt",
max_length=256,
add_special_tokens=True,
return_attention_mask=True,
padding="longest",
**kwargs,
):
"""
Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs`
arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a
voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded
to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
Returns:
Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the
`tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type.
"""
if language is None:
raise ValueError("The language argument is required for BertVits2Processor.")
if language not in self.bert_tokenizers:
raise ValueError(f"Language '{language}' not supported by BertVits2Processor.")
bert_text = self.preprocess_stage1(text, language)
g2p_text = self.preprocess_stage2(bert_text, language)
phone_text, tone_ids, lang_ids, word2ph = self.tokenizer.convert_g2p(g2p_text, language, add_special_tokens)
encoded_text = self.tokenizer(
phone_text,
return_tensors=return_tensors,
padding=padding,
max_length=max_length,
return_attention_mask=return_attention_mask,
**kwargs,
)
bert_tokenizer = self.bert_tokenizers[language]
bert_encoded_text = bert_tokenizer(
bert_text,
return_tensors=return_tensors,
padding=padding,
max_length=max_length,
return_attention_mask=return_attention_mask,
add_special_tokens=add_special_tokens,
return_token_type_ids=False,
**kwargs,
)
return BatchEncoding({
**encoded_text,
**{ f"bert_{k}": v for k, v in bert_encoded_text.items() },
"tone_ids": [tone_ids],
"language_ids": [lang_ids],
"word_to_phoneme": [word2ph],
}, tensor_type=return_tensors)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs)
processor_dict['bert_tokenizers'] = {
key: AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder=val)
for key, val in processor_dict['bert_tokenizers'].items()
}
return cls.from_args_and_dict(args, processor_dict, **kwargs)
def save_pretrained(
self,
save_directory,
**kwargs,
):
"""
Save the processor to the `save_directory` directory. If the processor has been created from a
repository, the method will push the model to the `save_directory` repository.
Args:
save_directory (`str`):
Directory where the processor will be saved.
push_to_hub (`bool`, `optional`, defaults to `False`):
Whether or not to push the model to the Hugging Face Hub after saving it.
kwargs:
Additional attributes to be saved with the processor.
"""
os.makedirs(save_directory, exist_ok=True)
for language, tokenizer in self.bert_tokenizers.items():
tokenizer.save_pretrained(os.path.join(save_directory, f"bert_{language}"))
bert_tokenizers = self.bert_tokenizers
self.bert_tokenizers = {language: f"bert_{language}" for language in self.bert_tokenizers}
outputs = super().save_pretrained(save_directory, **kwargs)
self.bert_tokenizers = bert_tokenizers
return outputs
|