hans00 commited on
Commit
0612c39
1 Parent(s): 052cb38

Update modeling_bert_vits2.py

Browse files
Files changed (1) hide show
  1. modeling_bert_vits2.py +1 -55
modeling_bert_vits2.py CHANGED
@@ -32,7 +32,7 @@ from transformers.modeling_outputs import (
32
  )
33
  from transformers.models.bert.modeling_bert import BertModel
34
  from transformers.modeling_utils import PreTrainedModel
35
- from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
36
 
37
  logger = logging.get_logger(__name__)
38
 
@@ -1404,58 +1404,6 @@ class BertVits2PreTrainedModel(PreTrainedModel):
1404
  module.weight.data[module.padding_idx].zero_()
1405
 
1406
 
1407
- BERT_VITS2_START_DOCSTRING = r"""
1408
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1409
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1410
- etc.)
1411
-
1412
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1413
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1414
- and behavior.
1415
-
1416
- Parameters:
1417
- config ([`BertVits2Config`]):
1418
- Model configuration class with all the parameters of the model. Initializing with a config file does not
1419
- load the weights associated with the model, only the configuration. Check out the
1420
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1421
- """
1422
-
1423
-
1424
- BERT_VITS2_INPUTS_DOCSTRING = r"""
1425
- Args:
1426
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1427
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1428
- it.
1429
-
1430
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1431
- [`PreTrainedTokenizer.__call__`] for details.
1432
-
1433
- [What are input IDs?](../glossary#input-ids)
1434
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1435
- Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1436
- 1]`:
1437
-
1438
- - 1 for tokens that are **not masked**,
1439
- - 0 for tokens that are **masked**.
1440
-
1441
- [What are attention masks?](../glossary#attention-mask)
1442
- speaker_id (`int`, *optional*):
1443
- Which speaker embedding to use. Only used for multispeaker models.
1444
- output_attentions (`bool`, *optional*):
1445
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1446
- tensors for more detail.
1447
- output_hidden_states (`bool`, *optional*):
1448
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1449
- more detail.
1450
- return_dict (`bool`, *optional*):
1451
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1452
- """
1453
-
1454
-
1455
- @add_start_docstrings(
1456
- "The complete VITS model, for text-to-speech synthesis.",
1457
- BERT_VITS2_START_DOCSTRING,
1458
- )
1459
  class BertVits2Model(BertVits2PreTrainedModel):
1460
  def __init__(self, config):
1461
  super().__init__(config)
@@ -1492,8 +1440,6 @@ class BertVits2Model(BertVits2PreTrainedModel):
1492
  def get_encoder(self):
1493
  return self.text_encoder
1494
 
1495
- @add_start_docstrings_to_model_forward(BERT_VITS2_INPUTS_DOCSTRING)
1496
- @replace_return_docstrings(output_type=BertVits2ModelOutput)
1497
  def forward(
1498
  self,
1499
  input_ids: Optional[torch.Tensor] = None,
 
32
  )
33
  from transformers.models.bert.modeling_bert import BertModel
34
  from transformers.modeling_utils import PreTrainedModel
35
+ from transformers.utils import logging
36
 
37
  logger = logging.get_logger(__name__)
38
 
 
1404
  module.weight.data[module.padding_idx].zero_()
1405
 
1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407
  class BertVits2Model(BertVits2PreTrainedModel):
1408
  def __init__(self, config):
1409
  super().__init__(config)
 
1440
  def get_encoder(self):
1441
  return self.text_encoder
1442
 
 
 
1443
  def forward(
1444
  self,
1445
  input_ids: Optional[torch.Tensor] = None,