# coding=utf-8 # Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Bert VITS2 """ import os from typing import Optional, Dict import re from transformers.tokenization_utils_base import BatchEncoding from transformers.processing_utils import ProcessorMixin from transformers.utils import logging from transformers.utils.hub import get_file_from_repo from transformers import AutoTokenizer, PreTrainedTokenizer, TOKENIZER_MAPPING # inject BertVits2Tokenizer import transformers from tokenization_bert_vits2 import BertVits2Tokenizer transformers.BertVits2Tokenizer = BertVits2Tokenizer TOKENIZER_MAPPING.register("bert_vits2", "BertVits2Tokenizer") logger = logging.get_logger(__name__) def chinese_number_to_words(text): out = "" if text[0] == "-": out += "負" text = text[1:] elif text[0] == "+": out += "正" text = text[1:] if "." in text: integer, decimal = text.split(".") out += chinese_number_to_words(integer) out += "點" for c in decimal: out += chinese_number_to_words(c) return out chinese_num = ["零", "一", "二", "三", "四", "五", "六", "七", "八", "九"] length = len(text) for i, c in enumerate(text): if c == "0" and out[-1] not in chinese_num: if i != length - 1 or length == 1: out += chinese_num[0] else: out += chinese_num[int(c)] if length - i == 2: out += "十" elif length - i == 3: out += "百" elif length - i == 4: out += "千" elif length - i == 5: out += "萬" elif length - i == 6: out += "十" elif length - i == 7: out += "百" elif length - i == 8: out += "千" elif length - i == 9: out += "億" elif length - i == 10: out += "十" elif length - i == 11: out += "百" elif length - i == 12: out += "千" elif length - i == 13: out += "兆" elif length - i == 14: out += "十" elif length - i == 15: out += "百" elif length - i == 16: out += "千" elif length - i == 17: out += "京" return out class BertVits2Processor(ProcessorMixin): r""" Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor. Args: tokenizers ([`PreTrainedTokenizer`]): An instance of [`PreTrainedTokenizer`]. bert_tokenizer ([`PreTrainedTokenizer`]): An instance of [`PreTrainedTokenizer`]. """ tokenizer_class = "AutoTokenizer" attributes = ["tokenizer"] def __init__(self, tokenizer: PreTrainedTokenizer, bert_tokenizers: Dict[str, PreTrainedTokenizer]): super().__init__(tokenizer) self.__bert_tokenizers = bert_tokenizers @property def bert_tokenizers(self): return self.__bert_tokenizers def preprocess_stage1(self, text, language=None): # normalize punctuation text = text.replace(",", ",").replace("。", ".").replace("?", "?").replace("!", "!").replace("...", "…") # normalize whitespace text = re.sub(r"\s+", " ", text).strip() # convert number to words if language == "zh": text = re.sub(r"[+-]?\d+", lambda x: chinese_number_to_words(x.group()), text) return text def preprocess_stage2(self, text, language=None): # normalize whitespace text = re.sub(r"\s", 'SP', text).strip() return text def __call__( self, text=None, language=None, return_tensors="pt", max_length=256, add_special_tokens=True, return_attention_mask=True, padding="longest", **kwargs, ): """ Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs` arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. Returns: Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the `tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type. """ if language is None: raise ValueError("The language argument is required for BertVits2Processor.") if language not in self.bert_tokenizers: raise ValueError(f"Language '{language}' not supported by BertVits2Processor.") bert_text = self.preprocess_stage1(text, language) g2p_text = self.preprocess_stage2(bert_text, language) phone_text, tone_ids, lang_ids, word2ph = self.tokenizer.convert_g2p(g2p_text, language, add_special_tokens) encoded_text = self.tokenizer( phone_text, return_tensors=return_tensors, padding=padding, max_length=max_length, return_attention_mask=return_attention_mask, **kwargs, ) bert_tokenizer = self.bert_tokenizers[language] bert_encoded_text = bert_tokenizer( bert_text, return_tensors=return_tensors, padding=padding, max_length=max_length, return_attention_mask=return_attention_mask, add_special_tokens=add_special_tokens, return_token_type_ids=False, **kwargs, ) return BatchEncoding({ **encoded_text, **{ f"bert_{k}": v for k, v in bert_encoded_text.items() }, "tone_ids": [tone_ids], "language_ids": [lang_ids], "word_to_phoneme": [word2ph], }, tensor_type=return_tensors) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs) processor_dict['bert_tokenizers'] = { key: AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder=val) for key, val in processor_dict['bert_tokenizers'].items() } return cls.from_args_and_dict(args, processor_dict, **kwargs) def save_pretrained( self, save_directory, **kwargs, ): """ Save the processor to the `save_directory` directory. If the processor has been created from a repository, the method will push the model to the `save_directory` repository. Args: save_directory (`str`): Directory where the processor will be saved. push_to_hub (`bool`, `optional`, defaults to `False`): Whether or not to push the model to the Hugging Face Hub after saving it. kwargs: Additional attributes to be saved with the processor. """ os.makedirs(save_directory, exist_ok=True) for language, tokenizer in self.bert_tokenizers.items(): tokenizer.save_pretrained(os.path.join(save_directory, f"bert_{language}")) bert_tokenizers = self.bert_tokenizers self.bert_tokenizers = {language: f"bert_{language}" for language in self.bert_tokenizers} outputs = super().save_pretrained(save_directory, **kwargs) self.bert_tokenizers = bert_tokenizers return outputs