File size: 20,085 Bytes
b3ce502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
import spaces
import gradio as gr
import triton
from huggingface_hub import InferenceClient
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM, BitsAndBytesConfig
from pathlib import Path
import torch
import torch.amp.autocast_mode
from PIL import Image
import os
import torchvision.transforms.functional as TVF
import gc
CLIP_PATH = "google/siglip-so400m-patch14-384"
CHECKPOINT_PATH = Path("/content/joy-caption-alpha-two/cgrkzexw-599808")
TITLE = """
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<h1 style="color: #FF00FF; font-size: 3em; margin-bottom: 0.5em;">Bullseye's JoyCaption Alpha Two</h1>
<p style="color: #00FFFF; font-size: 1.2em;">Unleash the power of AI-driven image captioning!</p>
</div>
"""
CAPTION_TYPE_MAP = {
"Descriptive": ["Write a descriptive caption for this image in a formal tone.", "Write a descriptive caption for this image in a formal tone within {word_count} words.", "Write a {length} descriptive caption for this image in a formal tone."],
"Descriptive (Informal)": ["Write a descriptive caption for this image in a casual tone.", "Write a descriptive caption for this image in a casual tone within {word_count} words.", "Write a {length} descriptive caption for this image in a casual tone."],
"Training Prompt": ["Write a stable diffusion prompt for this image.", "Write a stable diffusion prompt for this image within {word_count} words.", "Write a {length} stable diffusion prompt for this image."],
"MidJourney": ["Write a MidJourney prompt for this image.", "Write a MidJourney prompt for this image within {word_count} words.", "Write a {length} MidJourney prompt for this image."],
"Booru tag list": ["Write a list of Booru tags for this image.", "Write a list of Booru tags for this image within {word_count} words.", "Write a {length} list of Booru tags for this image."],
"Booru-like tag list": ["Write a list of Booru-like tags for this image.", "Write a list of Booru-like tags for this image within {word_count} words.", "Write a {length} list of Booru-like tags for this image."],
"Art Critic": ["Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.", "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.", "Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}."],
"Product Listing": ["Write a caption for this image as though it were a product listing.", "Write a caption for this image as though it were a product listing. Keep it under {word_count} words.", "Write a {length} caption for this image as though it were a product listing."],
"Social Media Post": ["Write a caption for this image as if it were being used for a social media post.", "Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.", "Write a {length} caption for this image as if it were being used for a social media post."],
}
HF_TOKEN = os.environ.get("HF_TOKEN", None)
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
def forward(self, vision_outputs: torch.Tensor):
if self.deep_extract:
x = torch.concat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
# <|image_start|>, IMAGE, <|image_end|>
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
# Load CLIP
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH, torch_dtype=torch.float16)
clip_model = clip_model.vision_model
assert (CHECKPOINT_PATH / "clip_model.pt").exists()
print("Loading VLM's custom vision model")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")
clip_model = torch.compile(clip_model)
# Tokenizer
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
# LLM
print("Loading LLM")
print("Loading VLM's custom text model")
# Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model",
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.float16
)
text_model.gradient_checkpointing_enable()
text_model.eval()
text_model = torch.compile(text_model)
# Image Adapter
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu"))
image_adapter.eval()
image_adapter.to("cuda")
image_adapter = torch.compile(image_adapter)
@spaces.GPU()
@torch.no_grad()
def stream_chat(input_image: Image.Image, caption_type: str, caption_length: str | int, extra_options: list[str], name_input: str, custom_prompt: str) -> tuple[str, str]:
torch.cuda.empty_cache()
gc.collect()
# 'any' means no length specified
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
# Build prompt
if length is None:
map_idx = 0
elif isinstance(length, int):
map_idx = 1
elif isinstance(length, str):
map_idx = 2
else:
raise ValueError(f"Invalid caption length: {length}")
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
# Add extra options
if len(extra_options) > 0:
prompt_str += " " + " ".join(extra_options)
# Add name, length, word_count
prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length)
if custom_prompt.strip() != "":
prompt_str = custom_prompt.strip()
# For debugging
print(f"Prompt: {prompt_str}")
# Preprocess image
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
pixel_values = pixel_values.to('cuda', dtype=torch.float16)
# Embed image
with torch.amp.autocast_mode.autocast('cuda', dtype=torch.float16):
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
embedded_images = image_adapter(vision_outputs.hidden_states)
embedded_images = embedded_images.to('cuda', dtype=torch.float16)
# Build the conversation
convo = [
{
"role": "system",
"content": "You are a helpful image captioner.",
},
{
"role": "user",
"content": prompt_str,
},
]
# Format the conversation
convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
assert isinstance(convo_string, str)
# Tokenize the conversation
convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False)
prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False)
assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor)
convo_tokens = convo_tokens.squeeze(0) # Squeeze just to make the following easier
prompt_tokens = prompt_tokens.squeeze(0)
# Calculate where to inject the image
eot_id_indices = (convo_tokens == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist()
assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}"
preamble_len = eot_id_indices[1] - prompt_tokens.shape[0] # Number of tokens before the prompt
# Embed the tokens
convo_tokens = convo_tokens.unsqueeze(0).to('cuda') # Keep as LongTensor
convo_embeds = text_model.model.embed_tokens(convo_tokens)
# Construct the input
input_embeds = torch.cat([
convo_embeds[:, :preamble_len],
embedded_images,
convo_embeds[:, preamble_len:],
], dim=1).to('cuda', dtype=torch.float16)
input_ids = torch.cat([
convo_tokens[:, :preamble_len],
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long, device='cuda'),
convo_tokens[:, preamble_len:],
], dim=1)
attention_mask = torch.ones_like(input_ids)
# Debugging
print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}")
with torch.amp.autocast_mode.autocast('cuda', dtype=torch.float16):
generate_ids = text_model.generate(
input_ids,
inputs_embeds=input_embeds,
attention_mask=attention_mask,
max_new_tokens=300,
do_sample=True,
suppress_tokens=None,
use_cache=True
)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
torch.cuda.empty_cache()
gc.collect()
return prompt_str, caption.strip()
def process_directory(directory_path, caption_type, caption_length, extra_options, name_input, custom_prompt):
processed_images = []
captions = []
for filename in os.listdir(directory_path):
if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
img_path = os.path.join(directory_path, filename)
img = Image.open(img_path)
prompt, caption = stream_chat(img, caption_type, caption_length, extra_options, name_input, custom_prompt)
# Save caption to a .txt file
txt_filename = os.path.splitext(filename)[0] + '.txt'
txt_path = os.path.join(directory_path, txt_filename)
with open(txt_path, 'w', encoding='utf-8') as f:
f.write(caption)
processed_images.append(img_path)
captions.append({"filename": filename, "caption": caption})
return processed_images, captions
# Custom CSS for a futuristic, neon-inspired theme
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #000000;
color: #00FFFF;
font-family: 'Orbitron', sans-serif;
}
.gradio-container {
background: linear-gradient(45deg, #1a1a2e, #16213e);
border: 2px solid #FF00FF;
border-radius: 15px;
box-shadow: 0 0 20px #FF00FF;
}
.input-box, .output-box {
background-color: rgba(15, 52, 96, 0.7);
border: 1px solid #00FFFF;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
box-shadow: 0 0 10px #00FFFF;
}
.input-box label, .output-box label {
color: #FF00FF;
font-weight: bold;
text-shadow: 0 0 5px #FF00FF;
}
.gr-button {
background: linear-gradient(45deg, #4a0e4e, #7a1e82);
border: none;
color: #FFFFFF;
font-weight: bold;
text-transform: uppercase;
transition: all 0.3s ease;
}
.gr-button:hover {
background: linear-gradient(45deg, #7a1e82, #4a0e4e);
box-shadow: 0 0 15px #FF00FF;
transform: scale(1.05);
}
.gr-dropdown {
background-color: #0f3460;
border: 1px solid #00FFFF;
color: #FFFFFF;
}
.gr-checkbox-group {
background-color: rgba(15, 52, 96, 0.7);
border: 1px solid #00FFFF;
border-radius: 10px;
padding: 10px;
}
.gr-checkbox-group label {
color: #FFFFFF;
}
.gr-form {
border: 1px solid #FF00FF;
border-radius: 10px;
padding: 20px;
margin: 10px 0;
background: rgba(26, 26, 46, 0.7);
}
.gr-input {
background-color: #0f3460;
border: 1px solid #00FFFF;
color: #FFFFFF;
border-radius: 5px;
}
.gr-input:focus {
box-shadow: 0 0 10px #00FFFF;
}
.gr-panel {
border: 1px solid #FF00FF;
border-radius: 10px;
background: rgba(22, 33, 62, 0.7);
}
"""
with gr.Blocks(css=custom_css) as demo:
gr.HTML(TITLE)
with gr.Row():
with gr.Column(scale=1):
input_images = gr.File(file_count="multiple", label="πΈ Upload Images", elem_classes="input-box")
directory_input = gr.Textbox(label="π Or Enter Directory Path", elem_classes="input-box")
with gr.Column(scale=2):
with gr.Group():
caption_type = gr.Dropdown(
choices=list(CAPTION_TYPE_MAP.keys()),
label="π Caption Type",
value="Descriptive",
elem_classes="input-box"
)
caption_length = gr.Dropdown(
choices=["any", "very short", "short", "medium-length", "long", "very long"] +
[str(i) for i in range(20, 261, 10)],
label="π Caption Length",
value="long",
elem_classes="input-box"
)
with gr.Accordion("π§ Advanced Options", open=False):
extra_options = gr.CheckboxGroup(
choices=[
"If there is a person/character in the image you must refer to them as {name}.",
"Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).",
"Include information about lighting.",
"Include information about camera angle.",
"Include information about whether there is a watermark or not.",
"Include information about whether there are JPEG artifacts or not.",
"If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.",
"Do NOT include anything sexual; keep it PG.",
"Do NOT mention the image's resolution.",
"You MUST include information about the subjective aesthetic quality of the image from low to very high.",
"Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.",
"Do NOT mention any text that is in the image.",
"Specify the depth of field and whether the background is in focus or blurred.",
"If applicable, mention the likely use of artificial or natural lighting sources.",
"Do NOT use any ambiguous language.",
"Include whether the image is sfw, suggestive, or nsfw.",
"ONLY describe the most important elements of the image."
],
label="Extra Options",
elem_classes="input-box"
)
name_input = gr.Textbox(label="π€ Person/Character Name (if applicable)", elem_classes="input-box")
gr.Markdown("**Note:** Name input is only used if an Extra Option is selected that requires it.")
custom_prompt = gr.Textbox(label="π¨ Custom Prompt (optional, will override all other settings)", elem_classes="input-box")
gr.Markdown("**Note:** Alpha Two is not a general instruction follower and will not follow prompts outside its training data well. Use this feature with caution.")
with gr.Row():
run_button = gr.Button("π Generate Captions", elem_classes="gr-button")
with gr.Row():
output_gallery = gr.Gallery(label="Processed Images", elem_classes="output-box")
output_text = gr.JSON(label="Generated Captions", elem_classes="output-box")
def process_and_display(images, caption_type, caption_length, extra_options, name_input, custom_prompt):
processed_images = []
captions = []
for img_file in images:
img = Image.open(img_file.name)
prompt, caption = stream_chat(img, caption_type, caption_length, extra_options, name_input, custom_prompt)
processed_images.append(img_file.name)
captions.append({"filename": img_file.name, "caption": caption})
return processed_images, captions
def process_input(input_images, directory_path, caption_type, caption_length, extra_options, name_input, custom_prompt):
if directory_path:
return process_directory(directory_path, caption_type, caption_length, extra_options, name_input, custom_prompt)
elif input_images:
return process_and_display(input_images, caption_type, caption_length, extra_options, name_input, custom_prompt)
else:
return [], []
run_button.click(
fn=process_input,
inputs=[input_images, directory_input, caption_type, caption_length, extra_options, name_input, custom_prompt],
outputs=[output_gallery, output_text]
)
if __name__ == "__main__":
demo.launch(share=True) |