File size: 5,885 Bytes
f22523d
f18894a
f22523d
 
 
 
 
 
 
 
0aa7c36
 
db2ce80
f22523d
db2ce80
f22523d
0aa7c36
f22523d
 
 
 
 
 
 
 
 
 
 
 
0aa7c36
42799d6
f18894a
3893e21
f22523d
 
 
 
f18894a
f88e92d
fa84497
f18894a
 
 
 
f22523d
 
 
 
 
 
 
f18894a
f22523d
 
 
0aa7c36
 
 
 
 
 
 
 
f22523d
 
 
 
 
 
 
 
 
42799d6
c00aac4
 
42799d6
 
35da4d4
42799d6
 
fa46e5f
42799d6
f18894a
42799d6
f22523d
 
3408f7d
35da4d4
f18894a
4d825bd
 
f18894a
 
 
 
3408f7d
f18894a
35da4d4
3408f7d
35da4d4
 
3408f7d
f18894a
 
 
 
 
 
 
 
 
f22523d
 
 
 
f18894a
 
 
 
 
 
 
f22523d
 
 
db2ce80
5260df5
0aa7c36
 
 
 
 
 
 
 
 
 
 
 
 
 
5260df5
db2ce80
 
 
5260df5
f22523d
5260df5
 
f22523d
5260df5
 
 
0aa7c36
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from typing import  Dict, List, Any
from PIL import Image
import torch
from torch import autocast
from tqdm.auto import tqdm
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh
from point_e.util.point_cloud import PointCloud
import json
import base64
import numpy as np
from io import BytesIO
import os


# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

if device.type != 'cuda':
    raise ValueError("need to run on GPU")

class EndpointHandler():
    def __init__(self, path=""):
        # load the optimized model
        print('creating base model...')
        os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
        
        print('creating base model...')
        self.base_name = 'base40M-textvec'
        self.base_model = model_from_config(MODEL_CONFIGS[self.base_name], device)
        self.base_model.eval()
        self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_name])

        print('creating image model...')
        # default - base40M. use base300M or base1B for better results
        self.base_image_name = 'base40M'
        self.base_image_model = model_from_config(MODEL_CONFIGS[self.base_image_name], device)
        self.base_image_model.eval()
        self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_image_name])

        print('creating upsample model...')
        self.upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
        self.upsampler_model.eval()
        self.upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
        
        print('downloading base checkpoint...')
        self.base_model.load_state_dict(load_checkpoint(self.base_name, device))
        self.base_image_model.load_state_dict(load_checkpoint(self.base_image_name, device))
        
        print('downloading upsampler checkpoint...')
        self.upsampler_model.load_state_dict(load_checkpoint('upsample', device))
        
        print('creating SDF model...')
        self.sdf_name = 'sdf'
        self.sdf_model = model_from_config(MODEL_CONFIGS[self.sdf_name], device)
        self.sdf_model.eval()
        
        print('loading SDF model...')
        self.sdf_model.load_state_dict(load_checkpoint(self.sdf_name, device))

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        """
        Args:
            data (:obj:):
                includes the input data and the parameters for the inference.
        Return:
            A :obj:`dict`:. plotly json Data
        """

        use_image = False
        
        #Checks if an image key has been provided, and if so, uses the image data instead of text input
        if "image" in data:
            image_data_encoded = data.pop("image")
            use_image = True
            print('image data found')
        else:
            print('no image data found')

        
        inputs = data.pop("inputs", data)

        if use_image:
            sampler = PointCloudSampler(
                device=device,
                models=[self.base_image_model, self.upsampler_model],
                diffusions=[self.base_diffusion, self.upsampler_diffusion],
                num_points=[1024, 4096 - 1024],
                aux_channels=['R', 'G', 'B'],
                guidance_scale=[3.0, 3.0],
            )
        
            # Load an image to condition on.
            image_data = base64.b64decode(image_data_encoded)
        
            # Convert bytes to PIL Image
            img = Image.open(BytesIO(image_data))
        else:
            sampler = PointCloudSampler(
                device=device,
                models=[self.base_model,self.upsampler_model],
                diffusions=[self.base_diffusion, self.upsampler_diffusion],
                num_points=[1024, 4096 - 1024],
                aux_channels=['R', 'G', 'B'],
                guidance_scale=[3.0, 0.0],
                model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
            ) 
 
        # run inference pipeline
        with autocast(device.type):
            samples = None
            if use_image:
                for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(images=[img]))):
                    samples = x
            else:
                for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inputs]))):
                    samples = x
            
        #image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]  

        pc = sampler.output_to_point_clouds(samples)[0]
        print('type of pc: ', type(pc))

        # Produce a mesh (with vertex colors)
        mesh = marching_cubes_mesh(
            pc=pc,
            model=self.sdf_model,
            batch_size=4096,
            grid_size=32, # increase to 128 for resolution used in evals
            progress=True,
        )

        # Write the mesh to a PLY file to import into some other program.
        with open('mesh.ply', 'wb') as f:
            mesh.write_ply(f)
            print(mesh)

        pc_dict = {}
        
        data_list = pc.coords.tolist()
        json_string = json.dumps(data_list)
        pc_dict['data'] = json_string

        # Convert NumPy arrays to Python lists for serializing
        serializable_channels = {key: value.tolist() for key, value in pc.channels.items()}

        # Serialize the dictionary to a JSON-formatted string
        channel_data = json.dumps(serializable_channels)
        pc_dict['channels'] = channel_data

        #return pc_dict
        return mesh