File size: 5,885 Bytes
f22523d f18894a f22523d 0aa7c36 db2ce80 f22523d db2ce80 f22523d 0aa7c36 f22523d 0aa7c36 42799d6 f18894a 3893e21 f22523d f18894a f88e92d fa84497 f18894a f22523d f18894a f22523d 0aa7c36 f22523d 42799d6 c00aac4 42799d6 35da4d4 42799d6 fa46e5f 42799d6 f18894a 42799d6 f22523d 3408f7d 35da4d4 f18894a 4d825bd f18894a 3408f7d f18894a 35da4d4 3408f7d 35da4d4 3408f7d f18894a f22523d f18894a f22523d db2ce80 5260df5 0aa7c36 5260df5 db2ce80 5260df5 f22523d 5260df5 f22523d 5260df5 0aa7c36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
from typing import Dict, List, Any
from PIL import Image
import torch
from torch import autocast
from tqdm.auto import tqdm
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh
from point_e.util.point_cloud import PointCloud
import json
import base64
import numpy as np
from io import BytesIO
import os
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
print('creating base model...')
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
print('creating base model...')
self.base_name = 'base40M-textvec'
self.base_model = model_from_config(MODEL_CONFIGS[self.base_name], device)
self.base_model.eval()
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_name])
print('creating image model...')
# default - base40M. use base300M or base1B for better results
self.base_image_name = 'base40M'
self.base_image_model = model_from_config(MODEL_CONFIGS[self.base_image_name], device)
self.base_image_model.eval()
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_image_name])
print('creating upsample model...')
self.upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
self.upsampler_model.eval()
self.upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
print('downloading base checkpoint...')
self.base_model.load_state_dict(load_checkpoint(self.base_name, device))
self.base_image_model.load_state_dict(load_checkpoint(self.base_image_name, device))
print('downloading upsampler checkpoint...')
self.upsampler_model.load_state_dict(load_checkpoint('upsample', device))
print('creating SDF model...')
self.sdf_name = 'sdf'
self.sdf_model = model_from_config(MODEL_CONFIGS[self.sdf_name], device)
self.sdf_model.eval()
print('loading SDF model...')
self.sdf_model.load_state_dict(load_checkpoint(self.sdf_name, device))
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. plotly json Data
"""
use_image = False
#Checks if an image key has been provided, and if so, uses the image data instead of text input
if "image" in data:
image_data_encoded = data.pop("image")
use_image = True
print('image data found')
else:
print('no image data found')
inputs = data.pop("inputs", data)
if use_image:
sampler = PointCloudSampler(
device=device,
models=[self.base_image_model, self.upsampler_model],
diffusions=[self.base_diffusion, self.upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[3.0, 3.0],
)
# Load an image to condition on.
image_data = base64.b64decode(image_data_encoded)
# Convert bytes to PIL Image
img = Image.open(BytesIO(image_data))
else:
sampler = PointCloudSampler(
device=device,
models=[self.base_model,self.upsampler_model],
diffusions=[self.base_diffusion, self.upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[3.0, 0.0],
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
)
# run inference pipeline
with autocast(device.type):
samples = None
if use_image:
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(images=[img]))):
samples = x
else:
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inputs]))):
samples = x
#image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
pc = sampler.output_to_point_clouds(samples)[0]
print('type of pc: ', type(pc))
# Produce a mesh (with vertex colors)
mesh = marching_cubes_mesh(
pc=pc,
model=self.sdf_model,
batch_size=4096,
grid_size=32, # increase to 128 for resolution used in evals
progress=True,
)
# Write the mesh to a PLY file to import into some other program.
with open('mesh.ply', 'wb') as f:
mesh.write_ply(f)
print(mesh)
pc_dict = {}
data_list = pc.coords.tolist()
json_string = json.dumps(data_list)
pc_dict['data'] = json_string
# Convert NumPy arrays to Python lists for serializing
serializable_channels = {key: value.tolist() for key, value in pc.channels.items()}
# Serialize the dictionary to a JSON-formatted string
channel_data = json.dumps(serializable_channels)
pc_dict['channels'] = channel_data
#return pc_dict
return mesh
|