File size: 2,252 Bytes
a5407e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from typing import Optional, Tuple

import matplotlib.pyplot as plt
import numpy as np

from .point_cloud import PointCloud


def plot_point_cloud(
    pc: PointCloud,
    color: bool = True,
    grid_size: int = 1,
    fixed_bounds: Optional[Tuple[Tuple[float, float, float], Tuple[float, float, float]]] = (
        (-0.75, -0.75, -0.75),
        (0.75, 0.75, 0.75),
    ),
):
    """
    Render a point cloud as a plot to the given image path.

    :param pc: the PointCloud to plot.
    :param image_path: the path to save the image, with a file extension.
    :param color: if True, show the RGB colors from the point cloud.
    :param grid_size: the number of random rotations to render.
    """
    fig = plt.figure(figsize=(8, 8))

    for i in range(grid_size):
        for j in range(grid_size):
            ax = fig.add_subplot(grid_size, grid_size, 1 + j + i * grid_size, projection="3d")
            color_args = {}
            if color:
                color_args["c"] = np.stack(
                    [pc.channels["R"], pc.channels["G"], pc.channels["B"]], axis=-1
                )
            c = pc.coords

            if grid_size > 1:
                theta = np.pi * 2 * (i * grid_size + j) / (grid_size**2)
                rotation = np.array(
                    [
                        [np.cos(theta), -np.sin(theta), 0.0],
                        [np.sin(theta), np.cos(theta), 0.0],
                        [0.0, 0.0, 1.0],
                    ]
                )
                c = c @ rotation

            ax.scatter(c[:, 0], c[:, 1], c[:, 2], **color_args)

            if fixed_bounds is None:
                min_point = c.min(0)
                max_point = c.max(0)
                size = (max_point - min_point).max() / 2
                center = (min_point + max_point) / 2
                ax.set_xlim3d(center[0] - size, center[0] + size)
                ax.set_ylim3d(center[1] - size, center[1] + size)
                ax.set_zlim3d(center[2] - size, center[2] + size)
            else:
                ax.set_xlim3d(fixed_bounds[0][0], fixed_bounds[1][0])
                ax.set_ylim3d(fixed_bounds[0][1], fixed_bounds[1][1])
                ax.set_zlim3d(fixed_bounds[0][2], fixed_bounds[1][2])

    return fig