English
File size: 2,770 Bytes
a5407e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
Adapted from https://github.com/openai/guided-diffusion/blob/22e0df8183507e13a7813f8d38d51b072ca1e67c/evaluations/evaluator.py
"""


import warnings

import numpy as np
from scipy import linalg


class InvalidFIDException(Exception):
    pass


class FIDStatistics:
    def __init__(self, mu: np.ndarray, sigma: np.ndarray):
        self.mu = mu
        self.sigma = sigma

    def frechet_distance(self, other, eps=1e-6):
        """
        Compute the Frechet distance between two sets of statistics.
        """
        # https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132
        mu1, sigma1 = self.mu, self.sigma
        mu2, sigma2 = other.mu, other.sigma

        mu1 = np.atleast_1d(mu1)
        mu2 = np.atleast_1d(mu2)

        sigma1 = np.atleast_2d(sigma1)
        sigma2 = np.atleast_2d(sigma2)

        assert (
            mu1.shape == mu2.shape
        ), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
        assert (
            sigma1.shape == sigma2.shape
        ), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"

        diff = mu1 - mu2

        # product might be almost singular
        covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
        if not np.isfinite(covmean).all():
            msg = (
                "fid calculation produces singular product; adding %s to diagonal of cov estimates"
                % eps
            )
            warnings.warn(msg)
            offset = np.eye(sigma1.shape[0]) * eps
            covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

        # numerical error might give slight imaginary component
        if np.iscomplexobj(covmean):
            if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
                m = np.max(np.abs(covmean.imag))
                raise ValueError("Imaginary component {}".format(m))
            covmean = covmean.real

        tr_covmean = np.trace(covmean)

        return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean


def compute_statistics(feats: np.ndarray) -> FIDStatistics:
    mu = np.mean(feats, axis=0)
    sigma = np.cov(feats, rowvar=False)
    return FIDStatistics(mu, sigma)


def compute_inception_score(preds: np.ndarray, split_size: int = 5000) -> float:
    # https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
    scores = []
    for i in range(0, len(preds), split_size):
        part = preds[i : i + split_size]
        kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
        kl = np.mean(np.sum(kl, 1))
        scores.append(np.exp(kl))
    return float(np.mean(scores))