English
File size: 4,224 Bytes
a5407e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from typing import Any, Dict

import torch
import torch.nn as nn

from .sdf import CrossAttentionPointCloudSDFModel
from .transformer import (
    CLIPImageGridPointDiffusionTransformer,
    CLIPImageGridUpsamplePointDiffusionTransformer,
    CLIPImagePointDiffusionTransformer,
    PointDiffusionTransformer,
    UpsamplePointDiffusionTransformer,
)

MODEL_CONFIGS = {
    "base40M-imagevec": {
        "cond_drop_prob": 0.1,
        "heads": 8,
        "init_scale": 0.25,
        "input_channels": 6,
        "layers": 12,
        "n_ctx": 1024,
        "name": "CLIPImagePointDiffusionTransformer",
        "output_channels": 12,
        "time_token_cond": True,
        "token_cond": True,
        "width": 512,
    },
    "base40M-textvec": {
        "cond_drop_prob": 0.1,
        "heads": 8,
        "init_scale": 0.25,
        "input_channels": 6,
        "layers": 12,
        "n_ctx": 1024,
        "name": "CLIPImagePointDiffusionTransformer",
        "output_channels": 12,
        "time_token_cond": True,
        "token_cond": True,
        "width": 512,
    },
    "base40M-uncond": {
        "heads": 8,
        "init_scale": 0.25,
        "input_channels": 6,
        "layers": 12,
        "n_ctx": 1024,
        "name": "PointDiffusionTransformer",
        "output_channels": 12,
        "time_token_cond": True,
        "width": 512,
    },
    "base40M": {
        "cond_drop_prob": 0.1,
        "heads": 8,
        "init_scale": 0.25,
        "input_channels": 6,
        "layers": 12,
        "n_ctx": 1024,
        "name": "CLIPImageGridPointDiffusionTransformer",
        "output_channels": 12,
        "time_token_cond": True,
        "width": 512,
    },
    "base300M": {
        "cond_drop_prob": 0.1,
        "heads": 16,
        "init_scale": 0.25,
        "input_channels": 6,
        "layers": 24,
        "n_ctx": 1024,
        "name": "CLIPImageGridPointDiffusionTransformer",
        "output_channels": 12,
        "time_token_cond": True,
        "width": 1024,
    },
    "base1B": {
        "cond_drop_prob": 0.1,
        "heads": 32,
        "init_scale": 0.25,
        "input_channels": 6,
        "layers": 24,
        "n_ctx": 1024,
        "name": "CLIPImageGridPointDiffusionTransformer",
        "output_channels": 12,
        "time_token_cond": True,
        "width": 2048,
    },
    "upsample": {
        "channel_biases": [0.0, 0.0, 0.0, -1.0, -1.0, -1.0],
        "channel_scales": [2.0, 2.0, 2.0, 0.007843137255, 0.007843137255, 0.007843137255],
        "cond_ctx": 1024,
        "cond_drop_prob": 0.1,
        "heads": 8,
        "init_scale": 0.25,
        "input_channels": 6,
        "layers": 12,
        "n_ctx": 3072,
        "name": "CLIPImageGridUpsamplePointDiffusionTransformer",
        "output_channels": 12,
        "time_token_cond": True,
        "width": 512,
    },
    "sdf": {
        "decoder_heads": 4,
        "decoder_layers": 4,
        "encoder_heads": 4,
        "encoder_layers": 8,
        "init_scale": 0.25,
        "n_ctx": 4096,
        "name": "CrossAttentionPointCloudSDFModel",
        "width": 256,
    },
}


def model_from_config(config: Dict[str, Any], device: torch.device) -> nn.Module:
    config = config.copy()
    name = config.pop("name")
    if name == "PointDiffusionTransformer":
        return PointDiffusionTransformer(device=device, dtype=torch.float32, **config)
    elif name == "CLIPImagePointDiffusionTransformer":
        return CLIPImagePointDiffusionTransformer(device=device, dtype=torch.float32, **config)
    elif name == "CLIPImageGridPointDiffusionTransformer":
        return CLIPImageGridPointDiffusionTransformer(device=device, dtype=torch.float32, **config)
    elif name == "UpsamplePointDiffusionTransformer":
        return UpsamplePointDiffusionTransformer(device=device, dtype=torch.float32, **config)
    elif name == "CLIPImageGridUpsamplePointDiffusionTransformer":
        return CLIPImageGridUpsamplePointDiffusionTransformer(
            device=device, dtype=torch.float32, **config
        )
    elif name == "CrossAttentionPointCloudSDFModel":
        return CrossAttentionPointCloudSDFModel(device=device, dtype=torch.float32, **config)
    raise ValueError(f"unknown model name: {name}")