File size: 4,224 Bytes
a5407e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
from typing import Any, Dict
import torch
import torch.nn as nn
from .sdf import CrossAttentionPointCloudSDFModel
from .transformer import (
CLIPImageGridPointDiffusionTransformer,
CLIPImageGridUpsamplePointDiffusionTransformer,
CLIPImagePointDiffusionTransformer,
PointDiffusionTransformer,
UpsamplePointDiffusionTransformer,
)
MODEL_CONFIGS = {
"base40M-imagevec": {
"cond_drop_prob": 0.1,
"heads": 8,
"init_scale": 0.25,
"input_channels": 6,
"layers": 12,
"n_ctx": 1024,
"name": "CLIPImagePointDiffusionTransformer",
"output_channels": 12,
"time_token_cond": True,
"token_cond": True,
"width": 512,
},
"base40M-textvec": {
"cond_drop_prob": 0.1,
"heads": 8,
"init_scale": 0.25,
"input_channels": 6,
"layers": 12,
"n_ctx": 1024,
"name": "CLIPImagePointDiffusionTransformer",
"output_channels": 12,
"time_token_cond": True,
"token_cond": True,
"width": 512,
},
"base40M-uncond": {
"heads": 8,
"init_scale": 0.25,
"input_channels": 6,
"layers": 12,
"n_ctx": 1024,
"name": "PointDiffusionTransformer",
"output_channels": 12,
"time_token_cond": True,
"width": 512,
},
"base40M": {
"cond_drop_prob": 0.1,
"heads": 8,
"init_scale": 0.25,
"input_channels": 6,
"layers": 12,
"n_ctx": 1024,
"name": "CLIPImageGridPointDiffusionTransformer",
"output_channels": 12,
"time_token_cond": True,
"width": 512,
},
"base300M": {
"cond_drop_prob": 0.1,
"heads": 16,
"init_scale": 0.25,
"input_channels": 6,
"layers": 24,
"n_ctx": 1024,
"name": "CLIPImageGridPointDiffusionTransformer",
"output_channels": 12,
"time_token_cond": True,
"width": 1024,
},
"base1B": {
"cond_drop_prob": 0.1,
"heads": 32,
"init_scale": 0.25,
"input_channels": 6,
"layers": 24,
"n_ctx": 1024,
"name": "CLIPImageGridPointDiffusionTransformer",
"output_channels": 12,
"time_token_cond": True,
"width": 2048,
},
"upsample": {
"channel_biases": [0.0, 0.0, 0.0, -1.0, -1.0, -1.0],
"channel_scales": [2.0, 2.0, 2.0, 0.007843137255, 0.007843137255, 0.007843137255],
"cond_ctx": 1024,
"cond_drop_prob": 0.1,
"heads": 8,
"init_scale": 0.25,
"input_channels": 6,
"layers": 12,
"n_ctx": 3072,
"name": "CLIPImageGridUpsamplePointDiffusionTransformer",
"output_channels": 12,
"time_token_cond": True,
"width": 512,
},
"sdf": {
"decoder_heads": 4,
"decoder_layers": 4,
"encoder_heads": 4,
"encoder_layers": 8,
"init_scale": 0.25,
"n_ctx": 4096,
"name": "CrossAttentionPointCloudSDFModel",
"width": 256,
},
}
def model_from_config(config: Dict[str, Any], device: torch.device) -> nn.Module:
config = config.copy()
name = config.pop("name")
if name == "PointDiffusionTransformer":
return PointDiffusionTransformer(device=device, dtype=torch.float32, **config)
elif name == "CLIPImagePointDiffusionTransformer":
return CLIPImagePointDiffusionTransformer(device=device, dtype=torch.float32, **config)
elif name == "CLIPImageGridPointDiffusionTransformer":
return CLIPImageGridPointDiffusionTransformer(device=device, dtype=torch.float32, **config)
elif name == "UpsamplePointDiffusionTransformer":
return UpsamplePointDiffusionTransformer(device=device, dtype=torch.float32, **config)
elif name == "CLIPImageGridUpsamplePointDiffusionTransformer":
return CLIPImageGridUpsamplePointDiffusionTransformer(
device=device, dtype=torch.float32, **config
)
elif name == "CrossAttentionPointCloudSDFModel":
return CrossAttentionPointCloudSDFModel(device=device, dtype=torch.float32, **config)
raise ValueError(f"unknown model name: {name}")
|