Thomas Male
Update handler.py
5260df5
raw
history blame
3.27 kB
from typing import Dict, List, Any
import torch
from torch import autocast
from tqdm.auto import tqdm
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
import json
import base64
import numpy as np
from io import BytesIO
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
print('creating base model...')
self.base_name = 'base40M-textvec'
self.base_model = model_from_config(MODEL_CONFIGS[self.base_name], device)
self.base_model.eval()
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_name])
print('creating upsample model...')
self.upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
self.upsampler_model.eval()
self.upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
print('downloading base checkpoint...')
self.base_model.load_state_dict(load_checkpoint(self.base_name, device))
print('downloading upsampler checkpoint...')
self.upsampler_model.load_state_dict(load_checkpoint('upsample', device))
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. plotly json Data
"""
inputs = data.pop("inputs", data)
sampler = PointCloudSampler(
device=device,
models=[self.base_model,self.upsampler_model],
diffusions=[self.base_diffusion, self.upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[3.0, 0.0],
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
)
# Set a test prompt to condition on.
# prompt = 'A bluebird mid-flight'
# run inference pipeline
with autocast(device.type):
samples = None
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inputs]))):
samples = x
#image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
pc = sampler.output_to_point_clouds(samples)[0]
print('type of pc: ', type(pc))
pc_dict = {}
data_list = pc.coords.tolist()
json_string = json.dumps(data_list)
pc_dict['data'] = json_string
# Convert NumPy arrays to Python lists for serializing
serializable_channels = {key: value.tolist() for key, value in pc.channels.items()}
# Serialize the dictionary to a JSON-formatted string
channel_data = json.dumps(serializable_channels)
pc_dict['channels'] = channel_data
return pc_dict