English
ByteEdAdmin's picture
Updated Handler to have better debugging output when encountering errors trying to generate mesh
fa524b1 verified
raw
history blame
8.25 kB
from typing import Dict, List, Any
from PIL import Image
import torch
from torch import autocast
from tqdm.auto import tqdm
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh
from point_e.util.point_cloud import PointCloud
import json
import base64
import numpy as np
from io import BytesIO
import os
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
print('creating base model...')
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
print('creating base model...')
self.base_name = 'base40M-textvec'
self.base_model = model_from_config(MODEL_CONFIGS[self.base_name], device)
self.base_model.eval()
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_name])
print('creating image model...')
# default - base40M. use base300M or base1B for better results
self.base_image_name = 'base40M'
self.base_image_model = model_from_config(MODEL_CONFIGS[self.base_image_name], device)
self.base_image_model.eval()
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_image_name])
print('creating upsample model...')
self.upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
self.upsampler_model.eval()
self.upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
print('downloading base checkpoint...')
self.base_model.load_state_dict(load_checkpoint(self.base_name, device))
self.base_image_model.load_state_dict(load_checkpoint(self.base_image_name, device))
print('downloading upsampler checkpoint...')
self.upsampler_model.load_state_dict(load_checkpoint('upsample', device))
print('creating SDF model...')
self.sdf_name = 'sdf'
self.sdf_model = model_from_config(MODEL_CONFIGS[self.sdf_name], device)
self.sdf_model.eval()
print('loading SDF model...')
self.sdf_model.load_state_dict(load_checkpoint(self.sdf_name, device))
def __call__(self, input_data: Any) -> Any:
# Check if input_data is a string and deserialize if necessary
if isinstance(input_data, str):
print("input_data is a string, attempting to deserialize...")
try:
input_data = json.loads(input_data) # Convert JSON string to dictionary
except json.JSONDecodeError as e:
print(f"Failed to parse JSON: {e}")
return None # Handle the error as appropriate
command = "null"
if "command" in input_data:
command = input_data["command"]
print(f"the command is: {command}")
#Assume the user app is still running the old version, and send the data back as it is being expected
#Currently, the App expects a .ply Mesh to be sent back, and will not have a command input sent with it
if command == "null":
temp_pc = self.generate_point_cloud(input_data)
return self.generate_mesh_from_pc(temp_pc)
elif command == "generate_pc":
return self.generate_point_cloud(input_data)
elif command == "generate_mesh":
print("generate_mesh command received...")
raw_pc = input_data.get("raw_pc")
if raw_pc is None:
print("raw_pc not found in input_data!")
return None
# Check if raw_pc is a string and deserialize if necessary
if isinstance(raw_pc, str):
print("raw_pc is a string, attempting to deserialize...")
raw_pc = json.loads(raw_pc)
print("Calling generate_mesh_from_pc...")
return self.generate_mesh_from_pc(raw_pc)
elif command == "status":
return self.check_status()
def check_status(self) -> bool:
return self.active
def generate_point_cloud(self, data: Any) -> Dict[str, Dict[str, float]]:
print("generate pc called...")
use_image = False
#Checks if an image key has been provided, and if so, uses the image data instead of text input
if "image" in data:
image_data_encoded = data.pop("image")
use_image = True
print('image data found')
else:
print('no image data found')
inputs = data.pop("inputs", data)
if use_image:
sampler = PointCloudSampler(
device=device,
models=[self.base_image_model, self.upsampler_model],
diffusions=[self.base_diffusion, self.upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[3.0, 3.0],
)
# Load an image to condition on.
image_data = base64.b64decode(image_data_encoded)
# Convert bytes to PIL Image
img = Image.open(BytesIO(image_data))
else:
sampler = PointCloudSampler(
device=device,
models=[self.base_model,self.upsampler_model],
diffusions=[self.base_diffusion, self.upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[3.0, 0.0],
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
)
# run inference pipeline
with autocast(device.type):
samples = None
if use_image:
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(images=[img]))):
samples = x
else:
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inputs]))):
samples = x
#image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
pc = sampler.output_to_point_clouds(samples)[0]
pc_dict = {}
data_list = pc.coords.tolist()
json_string = json.dumps(data_list)
pc_dict['data'] = json_string
# Convert NumPy arrays to Python lists for serializing
serializable_channels = {key: value.tolist() for key, value in pc.channels.items()}
# Serialize the dictionary to a JSON-formatted string
channel_data = json.dumps(serializable_channels)
pc_dict['channels'] = channel_data
return pc_dict
def generate_mesh_from_pc(self, pc_data: Any) -> Any:
# Produce a mesh (with vertex colors)
print("generate mesh called...")
#De-serialize both the coords and channel data
coords_list = json.loads(pc_data['data'])
channels_dict = json.loads(pc_data['channels'])
# Reconstruct the PointCloud object
# Make sure to use .items() for the dictionary to output the key-value pairs together
point_cloud = PointCloud(
coords=np.array(coords_list, dtype=np.float32),
channels={name: np.array(array, dtype=np.float32) for name, array in channels_dict.items()}
)
mesh = marching_cubes_mesh(
pc=point_cloud,
model=self.sdf_model,
batch_size=4096,
grid_size=32, # increase to 128 for resolution used in evals
progress=True,
)
# Write the mesh to a PLY file to import into some other program.
with open('mesh.ply', 'wb') as f:
mesh.write_ply(f)
print(mesh)
return mesh