from typing import Dict, List, Any from PIL import Image import torch from torch import autocast from tqdm.auto import tqdm from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config from point_e.diffusion.sampler import PointCloudSampler from point_e.models.download import load_checkpoint from point_e.models.configs import MODEL_CONFIGS, model_from_config from point_e.util.plotting import plot_point_cloud from point_e.util.pc_to_mesh import marching_cubes_mesh from point_e.util.point_cloud import PointCloud import json import base64 import numpy as np from io import BytesIO import os # set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device.type != 'cuda': raise ValueError("need to run on GPU") class EndpointHandler(): def __init__(self, path=""): # load the optimized model print('creating base model...') os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" print('creating base model...') self.base_name = 'base40M-textvec' self.base_model = model_from_config(MODEL_CONFIGS[self.base_name], device) self.base_model.eval() self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_name]) print('creating image model...') # default - base40M. use base300M or base1B for better results self.base_image_name = 'base40M' self.base_image_model = model_from_config(MODEL_CONFIGS[self.base_image_name], device) self.base_image_model.eval() self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_image_name]) print('creating upsample model...') self.upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) self.upsampler_model.eval() self.upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) print('downloading base checkpoint...') self.base_model.load_state_dict(load_checkpoint(self.base_name, device)) self.base_image_model.load_state_dict(load_checkpoint(self.base_image_name, device)) print('downloading upsampler checkpoint...') self.upsampler_model.load_state_dict(load_checkpoint('upsample', device)) print('creating SDF model...') self.sdf_name = 'sdf' self.sdf_model = model_from_config(MODEL_CONFIGS[self.sdf_name], device) self.sdf_model.eval() print('loading SDF model...') self.sdf_model.load_state_dict(load_checkpoint(self.sdf_name, device)) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`dict`:. plotly json Data """ use_image = False #Checks if an image key has been provided, and if so, uses the image data instead of text input if "image" in data: image_data_encoded = data.pop("image") use_image = True print('image data found') else: print('no image data found') inputs = data.pop("inputs", data) if use_image: sampler = PointCloudSampler( device=device, models=[self.base_image_model, self.upsampler_model], diffusions=[self.base_diffusion, self.upsampler_diffusion], num_points=[1024, 4096 - 1024], aux_channels=['R', 'G', 'B'], guidance_scale=[3.0, 3.0], ) # Load an image to condition on. image_data = base64.b64decode(image_data_encoded) # Convert bytes to PIL Image img = Image.open(BytesIO(image_data)) else: sampler = PointCloudSampler( device=device, models=[self.base_model,self.upsampler_model], diffusions=[self.base_diffusion, self.upsampler_diffusion], num_points=[1024, 4096 - 1024], aux_channels=['R', 'G', 'B'], guidance_scale=[3.0, 0.0], model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all ) # run inference pipeline with autocast(device.type): samples = None if use_image: for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(images=[img]))): samples = x else: for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inputs]))): samples = x #image = self.pipe(inputs, guidance_scale=7.5)["sample"][0] pc = sampler.output_to_point_clouds(samples)[0] print('type of pc: ', type(pc)) # Produce a mesh (with vertex colors) mesh = marching_cubes_mesh( pc=pc, model=self.sdf_model, batch_size=4096, grid_size=32, # increase to 128 for resolution used in evals progress=True, ) # Write the mesh to a PLY file to import into some other program. with open('mesh.ply', 'wb') as f: mesh.write_ply(f) print(mesh) pc_dict = {} data_list = pc.coords.tolist() json_string = json.dumps(data_list) pc_dict['data'] = json_string # Convert NumPy arrays to Python lists for serializing serializable_channels = {key: value.tolist() for key, value in pc.channels.items()} # Serialize the dictionary to a JSON-formatted string channel_data = json.dumps(serializable_channels) pc_dict['channels'] = channel_data #return pc_dict return mesh