""" Adapted from: https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/download.py """ import os from functools import lru_cache from typing import Dict, Optional import requests import torch from filelock import FileLock from tqdm.auto import tqdm MODEL_PATHS = { "base40M-imagevec": "https://openaipublic.azureedge.net/main/point-e/base_40m_imagevec.pt", "base40M-textvec": "https://openaipublic.azureedge.net/main/point-e/base_40m_textvec.pt", "base40M-uncond": "https://openaipublic.azureedge.net/main/point-e/base_40m_uncond.pt", "base40M": "https://openaipublic.azureedge.net/main/point-e/base_40m.pt", "base300M": "https://openaipublic.azureedge.net/main/point-e/base_300m.pt", "base1B": "https://openaipublic.azureedge.net/main/point-e/base_1b.pt", "upsample": "https://openaipublic.azureedge.net/main/point-e/upsample_40m.pt", "sdf": "https://openaipublic.azureedge.net/main/point-e/sdf.pt", "pointnet": "https://openaipublic.azureedge.net/main/point-e/pointnet.pt", } @lru_cache() def default_cache_dir() -> str: return os.path.join(os.path.abspath(os.getcwd()), "point_e_model_cache") def fetch_file_cached( url: str, progress: bool = True, cache_dir: Optional[str] = None, chunk_size: int = 4096 ) -> str: """ Download the file at the given URL into a local file and return the path. If cache_dir is specified, it will be used to download the files. Otherwise, default_cache_dir() is used. """ if cache_dir is None: cache_dir = default_cache_dir() os.makedirs(cache_dir, exist_ok=True) local_path = os.path.join(cache_dir, url.split("/")[-1]) if os.path.exists(local_path): return local_path response = requests.get(url, stream=True) size = int(response.headers.get("content-length", "0")) with FileLock(local_path + ".lock"): if progress: pbar = tqdm(total=size, unit="iB", unit_scale=True) tmp_path = local_path + ".tmp" with open(tmp_path, "wb") as f: for chunk in response.iter_content(chunk_size): if progress: pbar.update(len(chunk)) f.write(chunk) os.rename(tmp_path, local_path) if progress: pbar.close() return local_path def load_checkpoint( checkpoint_name: str, device: torch.device, progress: bool = True, cache_dir: Optional[str] = None, chunk_size: int = 4096, ) -> Dict[str, torch.Tensor]: if checkpoint_name not in MODEL_PATHS: raise ValueError( f"Unknown checkpoint name {checkpoint_name}. Known names are: {MODEL_PATHS.keys()}." ) path = fetch_file_cached( MODEL_PATHS[checkpoint_name], progress=progress, cache_dir=cache_dir, chunk_size=chunk_size ) return torch.load(path, map_location=device)