import math from typing import Optional import torch import torch.nn as nn from .checkpoint import checkpoint from .transformer import MLP, init_linear class MultiheadCrossAttention(nn.Module): def __init__( self, *, device: torch.device, dtype: torch.dtype, n_data: int, width: int, heads: int, init_scale: float, data_width: Optional[int] = None, ): super().__init__() self.n_data = n_data self.width = width self.heads = heads self.data_width = width if data_width is None else data_width self.c_q = nn.Linear(width, width, device=device, dtype=dtype) self.c_kv = nn.Linear(self.data_width, width * 2, device=device, dtype=dtype) self.c_proj = nn.Linear(width, width, device=device, dtype=dtype) self.attention = QKVMultiheadCrossAttention( device=device, dtype=dtype, heads=heads, n_data=n_data ) init_linear(self.c_q, init_scale) init_linear(self.c_kv, init_scale) init_linear(self.c_proj, init_scale) def forward(self, x, data): x = self.c_q(x) data = self.c_kv(data) x = checkpoint(self.attention, (x, data), (), True) x = self.c_proj(x) return x class QKVMultiheadCrossAttention(nn.Module): def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_data: int): super().__init__() self.device = device self.dtype = dtype self.heads = heads self.n_data = n_data def forward(self, q, kv): _, n_ctx, _ = q.shape bs, n_data, width = kv.shape attn_ch = width // self.heads // 2 scale = 1 / math.sqrt(math.sqrt(attn_ch)) q = q.view(bs, n_ctx, self.heads, -1) kv = kv.view(bs, n_data, self.heads, -1) k, v = torch.split(kv, attn_ch, dim=-1) weight = torch.einsum( "bthc,bshc->bhts", q * scale, k * scale ) # More stable with f16 than dividing afterwards wdtype = weight.dtype weight = torch.softmax(weight.float(), dim=-1).type(wdtype) return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1) class ResidualCrossAttentionBlock(nn.Module): def __init__( self, *, device: torch.device, dtype: torch.dtype, n_data: int, width: int, heads: int, data_width: Optional[int] = None, init_scale: float = 1.0, ): super().__init__() if data_width is None: data_width = width self.attn = MultiheadCrossAttention( device=device, dtype=dtype, n_data=n_data, width=width, heads=heads, data_width=data_width, init_scale=init_scale, ) self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype) self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype) self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale) self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype) def forward(self, x: torch.Tensor, data: torch.Tensor): x = x + self.attn(self.ln_1(x), self.ln_2(data)) x = x + self.mlp(self.ln_3(x)) return x class SimplePerceiver(nn.Module): """ Only does cross attention """ def __init__( self, *, device: torch.device, dtype: torch.dtype, n_data: int, width: int, layers: int, heads: int, init_scale: float = 0.25, data_width: Optional[int] = None, ): super().__init__() self.width = width self.layers = layers init_scale = init_scale * math.sqrt(1.0 / width) self.resblocks = nn.ModuleList( [ ResidualCrossAttentionBlock( device=device, dtype=dtype, n_data=n_data, width=width, heads=heads, init_scale=init_scale, data_width=data_width, ) for _ in range(layers) ] ) def forward(self, x: torch.Tensor, data: torch.Tensor): for block in self.resblocks: x = block(x, data) return x