Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
---
|
4 |
+
---
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- facebook
|
10 |
+
- meta
|
11 |
+
- pytorch
|
12 |
+
- llama
|
13 |
+
- llama-3
|
14 |
+
license: llama3
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
---
|
19 |
+
license: cc-by-sa-4.0
|
20 |
+
metrics:
|
21 |
+
- accuracy
|
22 |
+
pipeline_tag: text-generation
|
23 |
+
tags:
|
24 |
+
- code
|
25 |
+
---
|
26 |
+
|
27 |
+
A capable language model for text to SQL generation for Postgres, Redshift and Snowflake that is on-par with the most capable generalist frontier models.
|
28 |
+
|
29 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/603bbad3fd770a9997b57cb6/h52Z_OKYBaDDQMFZyU5pF.png)
|
30 |
+
|
31 |
+
## Model Description
|
32 |
+
|
33 |
+
Developed by: Defog, Inc
|
34 |
+
Model type: [Text to SQL]
|
35 |
+
License: [CC-by-SA-4.0]
|
36 |
+
Finetuned from model: [Meta-Llama-3-8B-Instruct]
|
37 |
+
|
38 |
+
## defog/llama-3-sqlcoder-8b for CTranslate2
|
39 |
+
|
40 |
+
**The model is quantized version of the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) with int8_float16 quantization and can be used in [CTranslate2](https://github.com/OpenNMT/CTranslate2).**
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
## How to use
|
45 |
+
|
46 |
+
```pip install ctranslate2```
|
47 |
+
|
48 |
+
This repository for use with [CTranslate2](https://github.com/OpenNMT/CTranslate2).
|
49 |
+
|
50 |
+
### Use with CTranslate2
|
51 |
+
|
52 |
+
This example code is obtained from [CTranslate2_transformers](https://opennmt.net/CTranslate2/guides/transformers.html#mpt) and [tokenizer AutoTokenizer](https://huggingface.co/docs/transformers/main_classes/tokenizer).
|
53 |
+
More detailed information about the `generate_batch` methon can be found at [CTranslate2_Generator.generate_batch](https://opennmt.net/CTranslate2/python/ctranslate2.Generator.html#ctranslate2.Generator.generate_batch).
|
54 |
+
|
55 |
+
```python
|
56 |
+
import ctranslate2
|
57 |
+
import transformers
|
58 |
+
|
59 |
+
from huggingface_hub import snapshot_download
|
60 |
+
model_id = "ByteForge/Defog_llama-3-sqlcoder-8b-ct2-int8_float16"
|
61 |
+
model_path = snapshot_download(model_id)
|
62 |
+
model = ctranslate2.Generator(model_path)
|
63 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
|
64 |
+
|
65 |
+
prompt="""
|
66 |
+
CREATE TABLE stadium (
|
67 |
+
stadium_id number,
|
68 |
+
location text,
|
69 |
+
name text,
|
70 |
+
capacity number,
|
71 |
+
highest number,
|
72 |
+
lowest number,
|
73 |
+
average number
|
74 |
+
)
|
75 |
+
|
76 |
+
CREATE TABLE singer (
|
77 |
+
singer_id number,
|
78 |
+
name text,
|
79 |
+
country text,
|
80 |
+
song_name text,
|
81 |
+
song_release_year text,
|
82 |
+
age number,
|
83 |
+
is_male others
|
84 |
+
)
|
85 |
+
|
86 |
+
CREATE TABLE concert (
|
87 |
+
concert_id number,
|
88 |
+
concert_name text,
|
89 |
+
theme text,
|
90 |
+
stadium_id text,
|
91 |
+
year text
|
92 |
+
)
|
93 |
+
|
94 |
+
CREATE TABLE singer_in_concert (
|
95 |
+
concert_id number,
|
96 |
+
singer_id text
|
97 |
+
)
|
98 |
+
|
99 |
+
-- Using valid SQLite, answer the following questions for the tables provided above.
|
100 |
+
|
101 |
+
-- What is the maximum, the average, and the minimum capacity of stadiums ? (Generate 1 Sql query. No explaination needed)
|
102 |
+
|
103 |
+
answer:
|
104 |
+
"""
|
105 |
+
|
106 |
+
messages = [
|
107 |
+
{"role": "system", "content": "You are SQL Expert. Given a input question and schema, answer with correct sql query"},
|
108 |
+
{"role": "user", "content": prompt},
|
109 |
+
]
|
110 |
+
|
111 |
+
input_ids = tokenizer.apply_chat_template(
|
112 |
+
messages,
|
113 |
+
tokenize=False,
|
114 |
+
add_generation_prompt=True
|
115 |
+
)
|
116 |
+
|
117 |
+
terminators = [
|
118 |
+
tokenizer.eos_token_id,
|
119 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
120 |
+
]
|
121 |
+
|
122 |
+
input_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(input_ids))
|
123 |
+
|
124 |
+
results = model.generate_batch([input_tokens], include_prompt_in_result=False, max_length=256, sampling_temperature=0.6, sampling_topp=0.9, end_token=terminators)
|
125 |
+
output = tokenizer.decode(results[0].sequences_ids[0])
|
126 |
+
|
127 |
+
print(output)
|
128 |
+
```
|
129 |
+
|
130 |
+
## Ideal prompt and inference parameters
|
131 |
+
Set temperature to 0, and do not do sampling.
|
132 |
+
|