Bytte commited on
Commit
9a8643b
1 Parent(s): bf2176b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 282.51 +/- 16.84
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c7f5c637f40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7f5c640040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7f5c6400d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7f5c640160>", "_build": "<function ActorCriticPolicy._build at 0x7c7f5c6401f0>", "forward": "<function ActorCriticPolicy.forward at 0x7c7f5c640280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7f5c640310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7f5c6403a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c7f5c640430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7f5c6404c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7f5c640550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7f5c6405e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7f5c631bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693779612177402503, "learning_rate": 0.0002, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrourz2vyi8k6/DOt1zyjxfl5M9PN+kvQAAgD8AAIA/mgZvPdxEILyTGnG8jLRBPVVLl70BFBo+AACAPwAAgD8NXa69C3WxP8p7Jr9ph3O+Ts7tvOEYjb4AAAAAAAAAAJqMo73UFIM+VqGUPq8jq76Ko4M9F/xGPQAAAAAAAAAA7bAsPmpriT80XBk/YoIVvw+8QT5Jd6U+AAAAAAAAAAAzek09SHOwujmKkTMvguSusPVUOrTqo7MAAIA/AACAPzOjzDwbmoA+xv9PPFNDw74MATU9vR0gvAAAAAAAAAAAAKJhPUM4aj9AHiU9KyoHv+4N+T0OdHa9AAAAAAAAAAAg/UK+gigqP4nuEz2ZhgO/EdaOvqzUHT4AAAAAAAAAAO2Gcb6YJ+o+eh5aPkQ68r6vOsq98bwoPgAAAAAAAAAArUOgPiWGJz9eb9a+mqD1vtJYoD7amtq+AAAAAAAAAAAAUII6qbsLvMa7MD5ZExo8YxR0vRqRBT0AAIA/AACAP9pmtD288bM+i4h2vu7H077gYCC9tp2GvQAAAAAAAAAAM63NPEjji7o+xYK12uvBrwQtYDq717w0AACAPwAAgD8zJRS9M6mcP29OMr7PJw6/2bG/vd1DiL0AAAAAAAAAAGY6T76jXzI/XugzPqz5Ab8nCBq+s8sfPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLFn1WbPQiMAWyUS/eMAXSUR0C/G/fc32mIdX2UKGgGR0BvVtqWTot+aAdL5WgIR0C/HAgkxASndX2UKGgGR0BzfQkD6nBMaAdLzmgIR0C/HBP/m1YydX2UKGgGR0Bxlsf8uSOjaAdL8GgIR0C/HCjnaFmGdX2UKGgGR0BzMK+pOvdNaAdNAwFoCEdAvxxGOvMbFXV9lChoBkdAcYPe40/GEWgHS+1oCEdAvxxKyVv/BHV9lChoBkdAcflQ/X5FgGgHTQABaAhHQL8cSriVB2R1fZQoaAZHQHIH2DYh+v1oB0vLaAhHQL8cbdy1eBx1fZQoaAZHQHHbGZZ0SytoB0vBaAhHQL8clPwNLDh1fZQoaAZHQG/vclgMMJBoB0vgaAhHQL8cqj6vaDh1fZQoaAZHQHEX7fgrH2hoB0vFaAhHQL8cxseXAuZ1fZQoaAZHQG5NNZFG5MFoB0vMaAhHQL8c62tdRix1fZQoaAZHQHE9wV0tAcFoB0vcaAhHQL8dAaufVZt1fZQoaAZHQHQxnMEA5rBoB0vjaAhHQL8dBU5+6RR1fZQoaAZHQHGDc3Mpw0hoB0vjaAhHQL8dDSeiBXl1fZQoaAZHQHN6FVo6CDpoB0vbaAhHQL8dDELYwqR1fZQoaAZHQHNK5Ex7AtZoB0vCaAhHQL8dGGKAJ9l1fZQoaAZHQG6el4s3AEdoB0vXaAhHQL8dJwm3OOd1fZQoaAZHQG9GpW/8EV5oB0vjaAhHQL8dJcdo3711fZQoaAZHQHGhGkadc0NoB0vbaAhHQL8dTSwW30B1fZQoaAZHQHJ/FuzhP0toB0vIaAhHQL8dVqk/KQt1fZQoaAZHQG4Dp/XoTwloB0vkaAhHQL8dfF4LThJ1fZQoaAZHQHMRty925hBoB0vyaAhHQL8di19fCyh1fZQoaAZHQHJ15Q53kghoB0vPaAhHQL8dsrBj4Hp1fZQoaAZHQHIbXdXT3IxoB0vuaAhHQL8dtAZKnNx1fZQoaAZHQHMY9rTH80loB0vMaAhHQL8mcF49ovl1fZQoaAZHQHBb7EcbR4RoB0vgaAhHQL8mxgMc6vJ1fZQoaAZHQHD6hEv0yxloB0vXaAhHQL8m799MK1J1fZQoaAZHQHMcJ35eqrBoB0vNaAhHQL8nCp0wJw91fZQoaAZHQHMeA3o9s8BoB0vhaAhHQL8nJP1+RYB1fZQoaAZHQHF+xL5AQg9oB0veaAhHQL8nQpEx7At1fZQoaAZHQHIrF6Vt4zJoB0vvaAhHQL8nS7N0NjN1fZQoaAZHQHHlYuf29L9oB0vsaAhHQL8nULLZBcB1fZQoaAZHQHKuz3Ehq0toB0vkaAhHQL8nZzD4xlB1fZQoaAZHQHHQ2S6lLvloB0v0aAhHQL8niMrmQsB1fZQoaAZHQG9MyEDhcZ9oB0vRaAhHQL8njbHZK4B1fZQoaAZHQHIOPy08eS1oB0viaAhHQL8noOlwcYJ1fZQoaAZHQFHuCAtnPE9oB0ujaAhHQL8nuN5+pfh1fZQoaAZHQHEHKmKqGURoB0vQaAhHQL8n18A7xNJ1fZQoaAZHQHFiNBfKISFoB0vmaAhHQL8n8Hu7YkF1fZQoaAZHQHCbESVW0Z5oB0voaAhHQL8oRPU8V591fZQoaAZHQHDzNd3Sro5oB0vraAhHQL8oZnGKhtd1fZQoaAZHQHFDqVD8cdZoB0vmaAhHQL8otn3cpLF1fZQoaAZHQHJhTDCP6sRoB0vdaAhHQL8oyhsImgJ1fZQoaAZHQG9d5L7GecxoB0vXaAhHQL8o11EVnEl1fZQoaAZHQHLKx0U47zVoB0vJaAhHQL8o7wHJLdx1fZQoaAZHQHJmdnscABFoB0vraAhHQL8pG45tFa11fZQoaAZHQHK7QYk3S8doB0vBaAhHQL8pJdV/+bV1fZQoaAZHQHJzWzSkTHtoB0voaAhHQL8pPiwjdHl1fZQoaAZHQHPRB1gYxcpoB0vPaAhHQL8pSQNCqp91fZQoaAZHQHLlSHEdeY5oB0vyaAhHQL8pTtYSxqx1fZQoaAZHQHDA+lbeMydoB0vkaAhHQL8pTYI0IkZ1fZQoaAZHQHEJq11GLDRoB0vPaAhHQL8pWXwb2lF1fZQoaAZHQHHOircTJyRoB0vKaAhHQL8pYSIP9UF1fZQoaAZHQHKz5FG5MDhoB0vYaAhHQL8pkvbXYlJ1fZQoaAZHQHGSZ/9YOlRoB0vpaAhHQL8pmpC8e0Z1fZQoaAZHQHMC9IGyHEdoB0vUaAhHQL8pwh5xBE91fZQoaAZHQHHiD0xubZxoB0vcaAhHQL8p4CfpUxV1fZQoaAZHQHC69j0+TvBoB0u/aAhHQL8qAYR/ViF1fZQoaAZHQHCbcdxQzk9oB0vMaAhHQL8qDJbt7a91fZQoaAZHQHBwuqJdjXpoB0vMaAhHQL8qJFgDzRR1fZQoaAZHQHNdFX3g1m9oB0vlaAhHQL8qI7DEWIp1fZQoaAZHQG3fSHEdeY5oB0vHaAhHQL8qPf2saKl1fZQoaAZHQHOys9B8hLZoB0vAaAhHQL8qTg8r7O51fZQoaAZHQG85B1s+FDhoB0vQaAhHQL8qYUg0TDh1fZQoaAZHQHGsfAGjbi9oB0vpaAhHQL8qZZ/Tb351fZQoaAZHQHEKN0JWvKVoB0vaaAhHQL8qZpON5t51fZQoaAZHQHMnlpj+aSdoB0vkaAhHQL8qeDwH7gt1fZQoaAZHQHIlG4Ajps5oB0vfaAhHQL8qfiZv1lJ1fZQoaAZHQHGEIeLehwloB0v5aAhHQL8qpiMHbAV1fZQoaAZHQHBmOcH4XXRoB0vkaAhHQL8qwSk0rLB1fZQoaAZHQHJ5gQDmr81oB0vLaAhHQL8q0SRKYiR1fZQoaAZHQHGSscIZ62RoB0vraAhHQL8q0rylN111fZQoaAZHQHEQs7U5MlFoB0vlaAhHQL8rEkQwsXl1fZQoaAZHQHFvYgieNDNoB0vNaAhHQL8rME0zj3p1fZQoaAZHQHGcG9g4OtpoB0vSaAhHQL8rOObRWtF1fZQoaAZHQHJQL8rI5o5oB0vjaAhHQL8rOIomXw91fZQoaAZHQG1RjqGDcudoB0vHaAhHQL8rRZCv5gx1fZQoaAZHQHOIMa86FM9oB00BAWgIR0C/K1YKD017dX2UKGgGR0BxIL2kBS1maAdL1WgIR0C/K2c3EQ5FdX2UKGgGR0B0MWofjjrBaAdLx2gIR0C/K4eLm6oVdX2UKGgGR0Bxs7e+Eh7maAdL3mgIR0C/K4wp8WsSdX2UKGgGR0ByCLdO6/ZeaAdL5WgIR0C/K5SQxN7CdX2UKGgGR0BxLdaC+UQkaAdL8GgIR0C/K55taY/ndX2UKGgGR0BzeX/ZM+NcaAdL7WgIR0C/K7E7jkuIdX2UKGgGR0Bxp6uV5a/zaAdL6mgIR0C/K92KqGUOdX2UKGgGR0By3Xg3tKI0aAdL1WgIR0C/K+4EW69TdX2UKGgGR0BzJUPxx1gZaAdL3WgIR0C/K/jUd7v5dX2UKGgGR0ByPc6ZH/cWaAdL6WgIR0C/K/lJcxCZdX2UKGgGR0BzGPIq9XcQaAdL3mgIR0C/LDeH8CPqdX2UKGgGR0ByZ+SW7e2vaAdLw2gIR0C/LDZW/8EWdX2UKGgGR0Bwp1BNVR1paAdL0GgIR0C/LEieqaPTdX2UKGgGR0ByozFZPl+3aAdL1mgIR0C/LEk8JUo8dX2UKGgGR0Byooan752yaAdL12gIR0C/LF2Jzkp7dX2UKGgGR0BtclKEnLJTaAdLzGgIR0C/LF/LTx5LdX2UKGgGR0ByJBbr1M/RaAdL1mgIR0C/LH1gtvn9dX2UKGgGR0ByPHdCVrylaAdL0WgIR0C/LJZm/WUbdX2UKGgGR0BzAzaVUuL8aAdL4mgIR0C/LLIBBAv+dX2UKGgGR0Bv4yGFi8WcaAdL1WgIR0C/LLPS2H+IdX2UKGgGR0BywcyHmA9WaAdL6GgIR0C/LMKlDWsjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 984, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
improved_ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b4cdae425108c71e2964ec0caf713786ddcc858985781c481714f61ce7d5100
3
+ size 146626
improved_ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
improved_ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c7f5c637f40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7f5c640040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7f5c6400d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7f5c640160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c7f5c6401f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c7f5c640280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7f5c640310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7f5c6403a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c7f5c640430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7f5c6404c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7f5c640550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7f5c6405e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c7f5c631bc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1693779612177402503,
30
+ "learning_rate": 0.0002,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrourz2vyi8k6/DOt1zyjxfl5M9PN+kvQAAgD8AAIA/mgZvPdxEILyTGnG8jLRBPVVLl70BFBo+AACAPwAAgD8NXa69C3WxP8p7Jr9ph3O+Ts7tvOEYjb4AAAAAAAAAAJqMo73UFIM+VqGUPq8jq76Ko4M9F/xGPQAAAAAAAAAA7bAsPmpriT80XBk/YoIVvw+8QT5Jd6U+AAAAAAAAAAAzek09SHOwujmKkTMvguSusPVUOrTqo7MAAIA/AACAPzOjzDwbmoA+xv9PPFNDw74MATU9vR0gvAAAAAAAAAAAAKJhPUM4aj9AHiU9KyoHv+4N+T0OdHa9AAAAAAAAAAAg/UK+gigqP4nuEz2ZhgO/EdaOvqzUHT4AAAAAAAAAAO2Gcb6YJ+o+eh5aPkQ68r6vOsq98bwoPgAAAAAAAAAArUOgPiWGJz9eb9a+mqD1vtJYoD7amtq+AAAAAAAAAAAAUII6qbsLvMa7MD5ZExo8YxR0vRqRBT0AAIA/AACAP9pmtD288bM+i4h2vu7H077gYCC9tp2GvQAAAAAAAAAAM63NPEjji7o+xYK12uvBrwQtYDq717w0AACAPwAAgD8zJRS9M6mcP29OMr7PJw6/2bG/vd1DiL0AAAAAAAAAAGY6T76jXzI/XugzPqz5Ab8nCBq+s8sfPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLFn1WbPQiMAWyUS/eMAXSUR0C/G/fc32mIdX2UKGgGR0BvVtqWTot+aAdL5WgIR0C/HAgkxASndX2UKGgGR0BzfQkD6nBMaAdLzmgIR0C/HBP/m1YydX2UKGgGR0Bxlsf8uSOjaAdL8GgIR0C/HCjnaFmGdX2UKGgGR0BzMK+pOvdNaAdNAwFoCEdAvxxGOvMbFXV9lChoBkdAcYPe40/GEWgHS+1oCEdAvxxKyVv/BHV9lChoBkdAcflQ/X5FgGgHTQABaAhHQL8cSriVB2R1fZQoaAZHQHIH2DYh+v1oB0vLaAhHQL8cbdy1eBx1fZQoaAZHQHHbGZZ0SytoB0vBaAhHQL8clPwNLDh1fZQoaAZHQG/vclgMMJBoB0vgaAhHQL8cqj6vaDh1fZQoaAZHQHEX7fgrH2hoB0vFaAhHQL8cxseXAuZ1fZQoaAZHQG5NNZFG5MFoB0vMaAhHQL8c62tdRix1fZQoaAZHQHE9wV0tAcFoB0vcaAhHQL8dAaufVZt1fZQoaAZHQHQxnMEA5rBoB0vjaAhHQL8dBU5+6RR1fZQoaAZHQHGDc3Mpw0hoB0vjaAhHQL8dDSeiBXl1fZQoaAZHQHN6FVo6CDpoB0vbaAhHQL8dDELYwqR1fZQoaAZHQHNK5Ex7AtZoB0vCaAhHQL8dGGKAJ9l1fZQoaAZHQG6el4s3AEdoB0vXaAhHQL8dJwm3OOd1fZQoaAZHQG9GpW/8EV5oB0vjaAhHQL8dJcdo3711fZQoaAZHQHGhGkadc0NoB0vbaAhHQL8dTSwW30B1fZQoaAZHQHJ/FuzhP0toB0vIaAhHQL8dVqk/KQt1fZQoaAZHQG4Dp/XoTwloB0vkaAhHQL8dfF4LThJ1fZQoaAZHQHMRty925hBoB0vyaAhHQL8di19fCyh1fZQoaAZHQHJ15Q53kghoB0vPaAhHQL8dsrBj4Hp1fZQoaAZHQHIbXdXT3IxoB0vuaAhHQL8dtAZKnNx1fZQoaAZHQHMY9rTH80loB0vMaAhHQL8mcF49ovl1fZQoaAZHQHBb7EcbR4RoB0vgaAhHQL8mxgMc6vJ1fZQoaAZHQHD6hEv0yxloB0vXaAhHQL8m799MK1J1fZQoaAZHQHMcJ35eqrBoB0vNaAhHQL8nCp0wJw91fZQoaAZHQHMeA3o9s8BoB0vhaAhHQL8nJP1+RYB1fZQoaAZHQHF+xL5AQg9oB0veaAhHQL8nQpEx7At1fZQoaAZHQHIrF6Vt4zJoB0vvaAhHQL8nS7N0NjN1fZQoaAZHQHHlYuf29L9oB0vsaAhHQL8nULLZBcB1fZQoaAZHQHKuz3Ehq0toB0vkaAhHQL8nZzD4xlB1fZQoaAZHQHHQ2S6lLvloB0v0aAhHQL8niMrmQsB1fZQoaAZHQG9MyEDhcZ9oB0vRaAhHQL8njbHZK4B1fZQoaAZHQHIOPy08eS1oB0viaAhHQL8noOlwcYJ1fZQoaAZHQFHuCAtnPE9oB0ujaAhHQL8nuN5+pfh1fZQoaAZHQHEHKmKqGURoB0vQaAhHQL8n18A7xNJ1fZQoaAZHQHFiNBfKISFoB0vmaAhHQL8n8Hu7YkF1fZQoaAZHQHCbESVW0Z5oB0voaAhHQL8oRPU8V591fZQoaAZHQHDzNd3Sro5oB0vraAhHQL8oZnGKhtd1fZQoaAZHQHFDqVD8cdZoB0vmaAhHQL8otn3cpLF1fZQoaAZHQHJhTDCP6sRoB0vdaAhHQL8oyhsImgJ1fZQoaAZHQG9d5L7GecxoB0vXaAhHQL8o11EVnEl1fZQoaAZHQHLKx0U47zVoB0vJaAhHQL8o7wHJLdx1fZQoaAZHQHJmdnscABFoB0vraAhHQL8pG45tFa11fZQoaAZHQHK7QYk3S8doB0vBaAhHQL8pJdV/+bV1fZQoaAZHQHJzWzSkTHtoB0voaAhHQL8pPiwjdHl1fZQoaAZHQHPRB1gYxcpoB0vPaAhHQL8pSQNCqp91fZQoaAZHQHLlSHEdeY5oB0vyaAhHQL8pTtYSxqx1fZQoaAZHQHDA+lbeMydoB0vkaAhHQL8pTYI0IkZ1fZQoaAZHQHEJq11GLDRoB0vPaAhHQL8pWXwb2lF1fZQoaAZHQHHOircTJyRoB0vKaAhHQL8pYSIP9UF1fZQoaAZHQHKz5FG5MDhoB0vYaAhHQL8pkvbXYlJ1fZQoaAZHQHGSZ/9YOlRoB0vpaAhHQL8pmpC8e0Z1fZQoaAZHQHMC9IGyHEdoB0vUaAhHQL8pwh5xBE91fZQoaAZHQHHiD0xubZxoB0vcaAhHQL8p4CfpUxV1fZQoaAZHQHC69j0+TvBoB0u/aAhHQL8qAYR/ViF1fZQoaAZHQHCbcdxQzk9oB0vMaAhHQL8qDJbt7a91fZQoaAZHQHBwuqJdjXpoB0vMaAhHQL8qJFgDzRR1fZQoaAZHQHNdFX3g1m9oB0vlaAhHQL8qI7DEWIp1fZQoaAZHQG3fSHEdeY5oB0vHaAhHQL8qPf2saKl1fZQoaAZHQHOys9B8hLZoB0vAaAhHQL8qTg8r7O51fZQoaAZHQG85B1s+FDhoB0vQaAhHQL8qYUg0TDh1fZQoaAZHQHGsfAGjbi9oB0vpaAhHQL8qZZ/Tb351fZQoaAZHQHEKN0JWvKVoB0vaaAhHQL8qZpON5t51fZQoaAZHQHMnlpj+aSdoB0vkaAhHQL8qeDwH7gt1fZQoaAZHQHIlG4Ajps5oB0vfaAhHQL8qfiZv1lJ1fZQoaAZHQHGEIeLehwloB0v5aAhHQL8qpiMHbAV1fZQoaAZHQHBmOcH4XXRoB0vkaAhHQL8qwSk0rLB1fZQoaAZHQHJ5gQDmr81oB0vLaAhHQL8q0SRKYiR1fZQoaAZHQHGSscIZ62RoB0vraAhHQL8q0rylN111fZQoaAZHQHEQs7U5MlFoB0vlaAhHQL8rEkQwsXl1fZQoaAZHQHFvYgieNDNoB0vNaAhHQL8rME0zj3p1fZQoaAZHQHGcG9g4OtpoB0vSaAhHQL8rOObRWtF1fZQoaAZHQHJQL8rI5o5oB0vjaAhHQL8rOIomXw91fZQoaAZHQG1RjqGDcudoB0vHaAhHQL8rRZCv5gx1fZQoaAZHQHOIMa86FM9oB00BAWgIR0C/K1YKD017dX2UKGgGR0BxIL2kBS1maAdL1WgIR0C/K2c3EQ5FdX2UKGgGR0B0MWofjjrBaAdLx2gIR0C/K4eLm6oVdX2UKGgGR0Bxs7e+Eh7maAdL3mgIR0C/K4wp8WsSdX2UKGgGR0ByCLdO6/ZeaAdL5WgIR0C/K5SQxN7CdX2UKGgGR0BxLdaC+UQkaAdL8GgIR0C/K55taY/ndX2UKGgGR0BzeX/ZM+NcaAdL7WgIR0C/K7E7jkuIdX2UKGgGR0Bxp6uV5a/zaAdL6mgIR0C/K92KqGUOdX2UKGgGR0By3Xg3tKI0aAdL1WgIR0C/K+4EW69TdX2UKGgGR0BzJUPxx1gZaAdL3WgIR0C/K/jUd7v5dX2UKGgGR0ByPc6ZH/cWaAdL6WgIR0C/K/lJcxCZdX2UKGgGR0BzGPIq9XcQaAdL3mgIR0C/LDeH8CPqdX2UKGgGR0ByZ+SW7e2vaAdLw2gIR0C/LDZW/8EWdX2UKGgGR0Bwp1BNVR1paAdL0GgIR0C/LEieqaPTdX2UKGgGR0ByozFZPl+3aAdL1mgIR0C/LEk8JUo8dX2UKGgGR0Byooan752yaAdL12gIR0C/LF2Jzkp7dX2UKGgGR0BtclKEnLJTaAdLzGgIR0C/LF/LTx5LdX2UKGgGR0ByJBbr1M/RaAdL1mgIR0C/LH1gtvn9dX2UKGgGR0ByPHdCVrylaAdL0WgIR0C/LJZm/WUbdX2UKGgGR0BzAzaVUuL8aAdL4mgIR0C/LLIBBAv+dX2UKGgGR0Bv4yGFi8WcaAdL1WgIR0C/LLPS2H+IdX2UKGgGR0BywcyHmA9WaAdL6GgIR0C/LMKlDWsjdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 984,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
improved_ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5463ef4f98028bd077d2f4aea3a74d5f539c7b0d12b6940af1d11b294c42ed45
3
+ size 87929
improved_ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a33f82ed47f4ea5ce996d3ccad23f44ae5425200ab53629091de049f047e2f11
3
+ size 43329
improved_ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
improved_ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (177 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 282.51418884482104, "std_reward": 16.84232930951566, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-03T23:03:51.615307"}