Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- improved_ppo-LunarLander-v2.zip +3 -0
- improved_ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- improved_ppo-LunarLander-v2/data +99 -0
- improved_ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- improved_ppo-LunarLander-v2/policy.pth +3 -0
- improved_ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- improved_ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 282.51 +/- 16.84
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c7f5c637f40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7f5c640040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7f5c6400d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7f5c640160>", "_build": "<function ActorCriticPolicy._build at 0x7c7f5c6401f0>", "forward": "<function ActorCriticPolicy.forward at 0x7c7f5c640280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7f5c640310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7f5c6403a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c7f5c640430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7f5c6404c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7f5c640550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7f5c6405e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7f5c631bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693779612177402503, "learning_rate": 0.0002, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrourz2vyi8k6/DOt1zyjxfl5M9PN+kvQAAgD8AAIA/mgZvPdxEILyTGnG8jLRBPVVLl70BFBo+AACAPwAAgD8NXa69C3WxP8p7Jr9ph3O+Ts7tvOEYjb4AAAAAAAAAAJqMo73UFIM+VqGUPq8jq76Ko4M9F/xGPQAAAAAAAAAA7bAsPmpriT80XBk/YoIVvw+8QT5Jd6U+AAAAAAAAAAAzek09SHOwujmKkTMvguSusPVUOrTqo7MAAIA/AACAPzOjzDwbmoA+xv9PPFNDw74MATU9vR0gvAAAAAAAAAAAAKJhPUM4aj9AHiU9KyoHv+4N+T0OdHa9AAAAAAAAAAAg/UK+gigqP4nuEz2ZhgO/EdaOvqzUHT4AAAAAAAAAAO2Gcb6YJ+o+eh5aPkQ68r6vOsq98bwoPgAAAAAAAAAArUOgPiWGJz9eb9a+mqD1vtJYoD7amtq+AAAAAAAAAAAAUII6qbsLvMa7MD5ZExo8YxR0vRqRBT0AAIA/AACAP9pmtD288bM+i4h2vu7H077gYCC9tp2GvQAAAAAAAAAAM63NPEjji7o+xYK12uvBrwQtYDq717w0AACAPwAAgD8zJRS9M6mcP29OMr7PJw6/2bG/vd1DiL0AAAAAAAAAAGY6T76jXzI/XugzPqz5Ab8nCBq+s8sfPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLFn1WbPQiMAWyUS/eMAXSUR0C/G/fc32mIdX2UKGgGR0BvVtqWTot+aAdL5WgIR0C/HAgkxASndX2UKGgGR0BzfQkD6nBMaAdLzmgIR0C/HBP/m1YydX2UKGgGR0Bxlsf8uSOjaAdL8GgIR0C/HCjnaFmGdX2UKGgGR0BzMK+pOvdNaAdNAwFoCEdAvxxGOvMbFXV9lChoBkdAcYPe40/GEWgHS+1oCEdAvxxKyVv/BHV9lChoBkdAcflQ/X5FgGgHTQABaAhHQL8cSriVB2R1fZQoaAZHQHIH2DYh+v1oB0vLaAhHQL8cbdy1eBx1fZQoaAZHQHHbGZZ0SytoB0vBaAhHQL8clPwNLDh1fZQoaAZHQG/vclgMMJBoB0vgaAhHQL8cqj6vaDh1fZQoaAZHQHEX7fgrH2hoB0vFaAhHQL8cxseXAuZ1fZQoaAZHQG5NNZFG5MFoB0vMaAhHQL8c62tdRix1fZQoaAZHQHE9wV0tAcFoB0vcaAhHQL8dAaufVZt1fZQoaAZHQHQxnMEA5rBoB0vjaAhHQL8dBU5+6RR1fZQoaAZHQHGDc3Mpw0hoB0vjaAhHQL8dDSeiBXl1fZQoaAZHQHN6FVo6CDpoB0vbaAhHQL8dDELYwqR1fZQoaAZHQHNK5Ex7AtZoB0vCaAhHQL8dGGKAJ9l1fZQoaAZHQG6el4s3AEdoB0vXaAhHQL8dJwm3OOd1fZQoaAZHQG9GpW/8EV5oB0vjaAhHQL8dJcdo3711fZQoaAZHQHGhGkadc0NoB0vbaAhHQL8dTSwW30B1fZQoaAZHQHJ/FuzhP0toB0vIaAhHQL8dVqk/KQt1fZQoaAZHQG4Dp/XoTwloB0vkaAhHQL8dfF4LThJ1fZQoaAZHQHMRty925hBoB0vyaAhHQL8di19fCyh1fZQoaAZHQHJ15Q53kghoB0vPaAhHQL8dsrBj4Hp1fZQoaAZHQHIbXdXT3IxoB0vuaAhHQL8dtAZKnNx1fZQoaAZHQHMY9rTH80loB0vMaAhHQL8mcF49ovl1fZQoaAZHQHBb7EcbR4RoB0vgaAhHQL8mxgMc6vJ1fZQoaAZHQHD6hEv0yxloB0vXaAhHQL8m799MK1J1fZQoaAZHQHMcJ35eqrBoB0vNaAhHQL8nCp0wJw91fZQoaAZHQHMeA3o9s8BoB0vhaAhHQL8nJP1+RYB1fZQoaAZHQHF+xL5AQg9oB0veaAhHQL8nQpEx7At1fZQoaAZHQHIrF6Vt4zJoB0vvaAhHQL8nS7N0NjN1fZQoaAZHQHHlYuf29L9oB0vsaAhHQL8nULLZBcB1fZQoaAZHQHKuz3Ehq0toB0vkaAhHQL8nZzD4xlB1fZQoaAZHQHHQ2S6lLvloB0v0aAhHQL8niMrmQsB1fZQoaAZHQG9MyEDhcZ9oB0vRaAhHQL8njbHZK4B1fZQoaAZHQHIOPy08eS1oB0viaAhHQL8noOlwcYJ1fZQoaAZHQFHuCAtnPE9oB0ujaAhHQL8nuN5+pfh1fZQoaAZHQHEHKmKqGURoB0vQaAhHQL8n18A7xNJ1fZQoaAZHQHFiNBfKISFoB0vmaAhHQL8n8Hu7YkF1fZQoaAZHQHCbESVW0Z5oB0voaAhHQL8oRPU8V591fZQoaAZHQHDzNd3Sro5oB0vraAhHQL8oZnGKhtd1fZQoaAZHQHFDqVD8cdZoB0vmaAhHQL8otn3cpLF1fZQoaAZHQHJhTDCP6sRoB0vdaAhHQL8oyhsImgJ1fZQoaAZHQG9d5L7GecxoB0vXaAhHQL8o11EVnEl1fZQoaAZHQHLKx0U47zVoB0vJaAhHQL8o7wHJLdx1fZQoaAZHQHJmdnscABFoB0vraAhHQL8pG45tFa11fZQoaAZHQHK7QYk3S8doB0vBaAhHQL8pJdV/+bV1fZQoaAZHQHJzWzSkTHtoB0voaAhHQL8pPiwjdHl1fZQoaAZHQHPRB1gYxcpoB0vPaAhHQL8pSQNCqp91fZQoaAZHQHLlSHEdeY5oB0vyaAhHQL8pTtYSxqx1fZQoaAZHQHDA+lbeMydoB0vkaAhHQL8pTYI0IkZ1fZQoaAZHQHEJq11GLDRoB0vPaAhHQL8pWXwb2lF1fZQoaAZHQHHOircTJyRoB0vKaAhHQL8pYSIP9UF1fZQoaAZHQHKz5FG5MDhoB0vYaAhHQL8pkvbXYlJ1fZQoaAZHQHGSZ/9YOlRoB0vpaAhHQL8pmpC8e0Z1fZQoaAZHQHMC9IGyHEdoB0vUaAhHQL8pwh5xBE91fZQoaAZHQHHiD0xubZxoB0vcaAhHQL8p4CfpUxV1fZQoaAZHQHC69j0+TvBoB0u/aAhHQL8qAYR/ViF1fZQoaAZHQHCbcdxQzk9oB0vMaAhHQL8qDJbt7a91fZQoaAZHQHBwuqJdjXpoB0vMaAhHQL8qJFgDzRR1fZQoaAZHQHNdFX3g1m9oB0vlaAhHQL8qI7DEWIp1fZQoaAZHQG3fSHEdeY5oB0vHaAhHQL8qPf2saKl1fZQoaAZHQHOys9B8hLZoB0vAaAhHQL8qTg8r7O51fZQoaAZHQG85B1s+FDhoB0vQaAhHQL8qYUg0TDh1fZQoaAZHQHGsfAGjbi9oB0vpaAhHQL8qZZ/Tb351fZQoaAZHQHEKN0JWvKVoB0vaaAhHQL8qZpON5t51fZQoaAZHQHMnlpj+aSdoB0vkaAhHQL8qeDwH7gt1fZQoaAZHQHIlG4Ajps5oB0vfaAhHQL8qfiZv1lJ1fZQoaAZHQHGEIeLehwloB0v5aAhHQL8qpiMHbAV1fZQoaAZHQHBmOcH4XXRoB0vkaAhHQL8qwSk0rLB1fZQoaAZHQHJ5gQDmr81oB0vLaAhHQL8q0SRKYiR1fZQoaAZHQHGSscIZ62RoB0vraAhHQL8q0rylN111fZQoaAZHQHEQs7U5MlFoB0vlaAhHQL8rEkQwsXl1fZQoaAZHQHFvYgieNDNoB0vNaAhHQL8rME0zj3p1fZQoaAZHQHGcG9g4OtpoB0vSaAhHQL8rOObRWtF1fZQoaAZHQHJQL8rI5o5oB0vjaAhHQL8rOIomXw91fZQoaAZHQG1RjqGDcudoB0vHaAhHQL8rRZCv5gx1fZQoaAZHQHOIMa86FM9oB00BAWgIR0C/K1YKD017dX2UKGgGR0BxIL2kBS1maAdL1WgIR0C/K2c3EQ5FdX2UKGgGR0B0MWofjjrBaAdLx2gIR0C/K4eLm6oVdX2UKGgGR0Bxs7e+Eh7maAdL3mgIR0C/K4wp8WsSdX2UKGgGR0ByCLdO6/ZeaAdL5WgIR0C/K5SQxN7CdX2UKGgGR0BxLdaC+UQkaAdL8GgIR0C/K55taY/ndX2UKGgGR0BzeX/ZM+NcaAdL7WgIR0C/K7E7jkuIdX2UKGgGR0Bxp6uV5a/zaAdL6mgIR0C/K92KqGUOdX2UKGgGR0By3Xg3tKI0aAdL1WgIR0C/K+4EW69TdX2UKGgGR0BzJUPxx1gZaAdL3WgIR0C/K/jUd7v5dX2UKGgGR0ByPc6ZH/cWaAdL6WgIR0C/K/lJcxCZdX2UKGgGR0BzGPIq9XcQaAdL3mgIR0C/LDeH8CPqdX2UKGgGR0ByZ+SW7e2vaAdLw2gIR0C/LDZW/8EWdX2UKGgGR0Bwp1BNVR1paAdL0GgIR0C/LEieqaPTdX2UKGgGR0ByozFZPl+3aAdL1mgIR0C/LEk8JUo8dX2UKGgGR0Byooan752yaAdL12gIR0C/LF2Jzkp7dX2UKGgGR0BtclKEnLJTaAdLzGgIR0C/LF/LTx5LdX2UKGgGR0ByJBbr1M/RaAdL1mgIR0C/LH1gtvn9dX2UKGgGR0ByPHdCVrylaAdL0WgIR0C/LJZm/WUbdX2UKGgGR0BzAzaVUuL8aAdL4mgIR0C/LLIBBAv+dX2UKGgGR0Bv4yGFi8WcaAdL1WgIR0C/LLPS2H+IdX2UKGgGR0BywcyHmA9WaAdL6GgIR0C/LMKlDWsjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 984, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
improved_ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b4cdae425108c71e2964ec0caf713786ddcc858985781c481714f61ce7d5100
|
3 |
+
size 146626
|
improved_ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
improved_ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c7f5c637f40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7f5c640040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7f5c6400d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7f5c640160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c7f5c6401f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c7f5c640280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7f5c640310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7f5c6403a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c7f5c640430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7f5c6404c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7f5c640550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7f5c6405e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c7f5c631bc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693779612177402503,
|
30 |
+
"learning_rate": 0.0002,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrourz2vyi8k6/DOt1zyjxfl5M9PN+kvQAAgD8AAIA/mgZvPdxEILyTGnG8jLRBPVVLl70BFBo+AACAPwAAgD8NXa69C3WxP8p7Jr9ph3O+Ts7tvOEYjb4AAAAAAAAAAJqMo73UFIM+VqGUPq8jq76Ko4M9F/xGPQAAAAAAAAAA7bAsPmpriT80XBk/YoIVvw+8QT5Jd6U+AAAAAAAAAAAzek09SHOwujmKkTMvguSusPVUOrTqo7MAAIA/AACAPzOjzDwbmoA+xv9PPFNDw74MATU9vR0gvAAAAAAAAAAAAKJhPUM4aj9AHiU9KyoHv+4N+T0OdHa9AAAAAAAAAAAg/UK+gigqP4nuEz2ZhgO/EdaOvqzUHT4AAAAAAAAAAO2Gcb6YJ+o+eh5aPkQ68r6vOsq98bwoPgAAAAAAAAAArUOgPiWGJz9eb9a+mqD1vtJYoD7amtq+AAAAAAAAAAAAUII6qbsLvMa7MD5ZExo8YxR0vRqRBT0AAIA/AACAP9pmtD288bM+i4h2vu7H077gYCC9tp2GvQAAAAAAAAAAM63NPEjji7o+xYK12uvBrwQtYDq717w0AACAPwAAgD8zJRS9M6mcP29OMr7PJw6/2bG/vd1DiL0AAAAAAAAAAGY6T76jXzI/XugzPqz5Ab8nCBq+s8sfPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLFn1WbPQiMAWyUS/eMAXSUR0C/G/fc32mIdX2UKGgGR0BvVtqWTot+aAdL5WgIR0C/HAgkxASndX2UKGgGR0BzfQkD6nBMaAdLzmgIR0C/HBP/m1YydX2UKGgGR0Bxlsf8uSOjaAdL8GgIR0C/HCjnaFmGdX2UKGgGR0BzMK+pOvdNaAdNAwFoCEdAvxxGOvMbFXV9lChoBkdAcYPe40/GEWgHS+1oCEdAvxxKyVv/BHV9lChoBkdAcflQ/X5FgGgHTQABaAhHQL8cSriVB2R1fZQoaAZHQHIH2DYh+v1oB0vLaAhHQL8cbdy1eBx1fZQoaAZHQHHbGZZ0SytoB0vBaAhHQL8clPwNLDh1fZQoaAZHQG/vclgMMJBoB0vgaAhHQL8cqj6vaDh1fZQoaAZHQHEX7fgrH2hoB0vFaAhHQL8cxseXAuZ1fZQoaAZHQG5NNZFG5MFoB0vMaAhHQL8c62tdRix1fZQoaAZHQHE9wV0tAcFoB0vcaAhHQL8dAaufVZt1fZQoaAZHQHQxnMEA5rBoB0vjaAhHQL8dBU5+6RR1fZQoaAZHQHGDc3Mpw0hoB0vjaAhHQL8dDSeiBXl1fZQoaAZHQHN6FVo6CDpoB0vbaAhHQL8dDELYwqR1fZQoaAZHQHNK5Ex7AtZoB0vCaAhHQL8dGGKAJ9l1fZQoaAZHQG6el4s3AEdoB0vXaAhHQL8dJwm3OOd1fZQoaAZHQG9GpW/8EV5oB0vjaAhHQL8dJcdo3711fZQoaAZHQHGhGkadc0NoB0vbaAhHQL8dTSwW30B1fZQoaAZHQHJ/FuzhP0toB0vIaAhHQL8dVqk/KQt1fZQoaAZHQG4Dp/XoTwloB0vkaAhHQL8dfF4LThJ1fZQoaAZHQHMRty925hBoB0vyaAhHQL8di19fCyh1fZQoaAZHQHJ15Q53kghoB0vPaAhHQL8dsrBj4Hp1fZQoaAZHQHIbXdXT3IxoB0vuaAhHQL8dtAZKnNx1fZQoaAZHQHMY9rTH80loB0vMaAhHQL8mcF49ovl1fZQoaAZHQHBb7EcbR4RoB0vgaAhHQL8mxgMc6vJ1fZQoaAZHQHD6hEv0yxloB0vXaAhHQL8m799MK1J1fZQoaAZHQHMcJ35eqrBoB0vNaAhHQL8nCp0wJw91fZQoaAZHQHMeA3o9s8BoB0vhaAhHQL8nJP1+RYB1fZQoaAZHQHF+xL5AQg9oB0veaAhHQL8nQpEx7At1fZQoaAZHQHIrF6Vt4zJoB0vvaAhHQL8nS7N0NjN1fZQoaAZHQHHlYuf29L9oB0vsaAhHQL8nULLZBcB1fZQoaAZHQHKuz3Ehq0toB0vkaAhHQL8nZzD4xlB1fZQoaAZHQHHQ2S6lLvloB0v0aAhHQL8niMrmQsB1fZQoaAZHQG9MyEDhcZ9oB0vRaAhHQL8njbHZK4B1fZQoaAZHQHIOPy08eS1oB0viaAhHQL8noOlwcYJ1fZQoaAZHQFHuCAtnPE9oB0ujaAhHQL8nuN5+pfh1fZQoaAZHQHEHKmKqGURoB0vQaAhHQL8n18A7xNJ1fZQoaAZHQHFiNBfKISFoB0vmaAhHQL8n8Hu7YkF1fZQoaAZHQHCbESVW0Z5oB0voaAhHQL8oRPU8V591fZQoaAZHQHDzNd3Sro5oB0vraAhHQL8oZnGKhtd1fZQoaAZHQHFDqVD8cdZoB0vmaAhHQL8otn3cpLF1fZQoaAZHQHJhTDCP6sRoB0vdaAhHQL8oyhsImgJ1fZQoaAZHQG9d5L7GecxoB0vXaAhHQL8o11EVnEl1fZQoaAZHQHLKx0U47zVoB0vJaAhHQL8o7wHJLdx1fZQoaAZHQHJmdnscABFoB0vraAhHQL8pG45tFa11fZQoaAZHQHK7QYk3S8doB0vBaAhHQL8pJdV/+bV1fZQoaAZHQHJzWzSkTHtoB0voaAhHQL8pPiwjdHl1fZQoaAZHQHPRB1gYxcpoB0vPaAhHQL8pSQNCqp91fZQoaAZHQHLlSHEdeY5oB0vyaAhHQL8pTtYSxqx1fZQoaAZHQHDA+lbeMydoB0vkaAhHQL8pTYI0IkZ1fZQoaAZHQHEJq11GLDRoB0vPaAhHQL8pWXwb2lF1fZQoaAZHQHHOircTJyRoB0vKaAhHQL8pYSIP9UF1fZQoaAZHQHKz5FG5MDhoB0vYaAhHQL8pkvbXYlJ1fZQoaAZHQHGSZ/9YOlRoB0vpaAhHQL8pmpC8e0Z1fZQoaAZHQHMC9IGyHEdoB0vUaAhHQL8pwh5xBE91fZQoaAZHQHHiD0xubZxoB0vcaAhHQL8p4CfpUxV1fZQoaAZHQHC69j0+TvBoB0u/aAhHQL8qAYR/ViF1fZQoaAZHQHCbcdxQzk9oB0vMaAhHQL8qDJbt7a91fZQoaAZHQHBwuqJdjXpoB0vMaAhHQL8qJFgDzRR1fZQoaAZHQHNdFX3g1m9oB0vlaAhHQL8qI7DEWIp1fZQoaAZHQG3fSHEdeY5oB0vHaAhHQL8qPf2saKl1fZQoaAZHQHOys9B8hLZoB0vAaAhHQL8qTg8r7O51fZQoaAZHQG85B1s+FDhoB0vQaAhHQL8qYUg0TDh1fZQoaAZHQHGsfAGjbi9oB0vpaAhHQL8qZZ/Tb351fZQoaAZHQHEKN0JWvKVoB0vaaAhHQL8qZpON5t51fZQoaAZHQHMnlpj+aSdoB0vkaAhHQL8qeDwH7gt1fZQoaAZHQHIlG4Ajps5oB0vfaAhHQL8qfiZv1lJ1fZQoaAZHQHGEIeLehwloB0v5aAhHQL8qpiMHbAV1fZQoaAZHQHBmOcH4XXRoB0vkaAhHQL8qwSk0rLB1fZQoaAZHQHJ5gQDmr81oB0vLaAhHQL8q0SRKYiR1fZQoaAZHQHGSscIZ62RoB0vraAhHQL8q0rylN111fZQoaAZHQHEQs7U5MlFoB0vlaAhHQL8rEkQwsXl1fZQoaAZHQHFvYgieNDNoB0vNaAhHQL8rME0zj3p1fZQoaAZHQHGcG9g4OtpoB0vSaAhHQL8rOObRWtF1fZQoaAZHQHJQL8rI5o5oB0vjaAhHQL8rOIomXw91fZQoaAZHQG1RjqGDcudoB0vHaAhHQL8rRZCv5gx1fZQoaAZHQHOIMa86FM9oB00BAWgIR0C/K1YKD017dX2UKGgGR0BxIL2kBS1maAdL1WgIR0C/K2c3EQ5FdX2UKGgGR0B0MWofjjrBaAdLx2gIR0C/K4eLm6oVdX2UKGgGR0Bxs7e+Eh7maAdL3mgIR0C/K4wp8WsSdX2UKGgGR0ByCLdO6/ZeaAdL5WgIR0C/K5SQxN7CdX2UKGgGR0BxLdaC+UQkaAdL8GgIR0C/K55taY/ndX2UKGgGR0BzeX/ZM+NcaAdL7WgIR0C/K7E7jkuIdX2UKGgGR0Bxp6uV5a/zaAdL6mgIR0C/K92KqGUOdX2UKGgGR0By3Xg3tKI0aAdL1WgIR0C/K+4EW69TdX2UKGgGR0BzJUPxx1gZaAdL3WgIR0C/K/jUd7v5dX2UKGgGR0ByPc6ZH/cWaAdL6WgIR0C/K/lJcxCZdX2UKGgGR0BzGPIq9XcQaAdL3mgIR0C/LDeH8CPqdX2UKGgGR0ByZ+SW7e2vaAdLw2gIR0C/LDZW/8EWdX2UKGgGR0Bwp1BNVR1paAdL0GgIR0C/LEieqaPTdX2UKGgGR0ByozFZPl+3aAdL1mgIR0C/LEk8JUo8dX2UKGgGR0Byooan752yaAdL12gIR0C/LF2Jzkp7dX2UKGgGR0BtclKEnLJTaAdLzGgIR0C/LF/LTx5LdX2UKGgGR0ByJBbr1M/RaAdL1mgIR0C/LH1gtvn9dX2UKGgGR0ByPHdCVrylaAdL0WgIR0C/LJZm/WUbdX2UKGgGR0BzAzaVUuL8aAdL4mgIR0C/LLIBBAv+dX2UKGgGR0Bv4yGFi8WcaAdL1WgIR0C/LLPS2H+IdX2UKGgGR0BywcyHmA9WaAdL6GgIR0C/LMKlDWsjdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 984,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 8,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
improved_ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5463ef4f98028bd077d2f4aea3a74d5f539c7b0d12b6940af1d11b294c42ed45
|
3 |
+
size 87929
|
improved_ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a33f82ed47f4ea5ce996d3ccad23f44ae5425200ab53629091de049f047e2f11
|
3 |
+
size 43329
|
improved_ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
improved_ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (177 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 282.51418884482104, "std_reward": 16.84232930951566, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-03T23:03:51.615307"}
|