{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7f5c631bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693774296961569013, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMAbi71SsMy5iGuQPBUBsDVitEU77C+uNAAAAAAAAIA/M9DEvRHlhT/HuhK+Ts/rvjrI3r1YbKM7AAAAAAAAAAAN/7c96Je7vOtbSL5+0jK+kvsMPmAqNj8AAIA/AACAPyZnyj0UpXQ/zpSbvfXJvL7SI5w9XEUWvQAAAAAAAAAAM1WevGlwQry4hRg9UMiovYohArwW2ha+AACAPwAAgD9m1I+8GqOdP24Cg71nCs++aPjUvMLeF70AAAAAAAAAAJowZz3cFkM+BVzpvZ/9jb5KjGu9FyKyPAAAAAAAAAAAAN/7PR1PRT7i5FS++qxEviV7AL3baWk9AAAAAAAAAAAzkVG8fse2P0xMMr7W0JM6FAQDPUrz9j0AAAAAAAAAAIDgbL0pOFe6QqjTunxhy7UBR2O6glf5OQAAAAAAAIA/gCmcvWv5Aj+B1q878glvvnawf7uf3gy9AAAAAAAAAAAzf0i8hcqhuxfEkrw99XU8tsP7PLhIUr0AAIA/AACAP83jQj42qk4/dYQRvMdTgL7O9es9QMhHvQAAAAAAAAAAhg1tvk1YDb0xGBO8t4eduls4dz4Gp2s7AACAPwAAgD9mYns9Sym6PTL+fb29tSq+NYBavAcUG70AAAAAAAAAAKOEhr5XQWC94c6mu/Dtabr/icA+7aEwOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGs8PfbblBCMAWyUTTcBjAF0lEdAlKBs3EQ5FXV9lChoBkdAPedLcsUZemgHS+ZoCEdAlKCEiliz9nV9lChoBkdAbvE6gdwNsmgHTSgBaAhHQJShEEwFkhB1fZQoaAZHQHBfglF+d9VoB001AWgIR0CUobb+98JEdX2UKGgGR0BwgDC79Q40aAdNMAFoCEdAlKK1NUOuq3V9lChoBkdAcVJl67dzn2gHTTABaAhHQJSjc1ejVQR1fZQoaAZHQG0a8stkFwFoB00iAWgIR0CUo/HQQcxTdX2UKGgGR0Bwbd1+y7f6aAdNgQFoCEdAlKQsspXp4nV9lChoBkdAbzernTy8SWgHTTUBaAhHQJSkKx8lXzV1fZQoaAZHQHE4cOf/WDpoB00lAWgIR0CUpaiwjdHldX2UKGgGR0BuOsb3oLXuaAdNFQFoCEdAlKYohpxm03V9lChoBkdAcOvs/pt78mgHTT8BaAhHQJSm8kOZssR1fZQoaAZHQHFhi/XXiBJoB00KAWgIR0CUpycZ9/jLdX2UKGgGR0BtvSTlkpZwaAdNHQFoCEdAlKc10HQhOnV9lChoBkdAbJk8La24NWgHS/JoCEdAlKjVclgMMXV9lChoBkdAbvAGlANXo2gHTSABaAhHQJSpxQhwEQp1fZQoaAZHQHGCoCU5dW1oB01cAWgIR0CUquHARChOdX2UKGgGR0Bub8T+NtIkaAdNSQFoCEdAlKtYNVinYXV9lChoBkdAbQdnLaEi+2gHTQYBaAhHQJSs1R51Ng11fZQoaAZHQG8SCPQv6CVoB00fAWgIR0CUrcPCl7+ldX2UKGgGR0BkUma6STyKaAdN6ANoCEdAlK4CWZ7Xx3V9lChoBkdAb17b5dnkDWgHTVIBaAhHQJSuFVuJk5J1fZQoaAZHQHAnoZMtbs5oB01BAWgIR0CUrj0ALiMpdX2UKGgGR0BuQscKgIyCaAdNfQFoCEdAlK6LJnxri3V9lChoBkdAcfU/UONHY2gHTVYBaAhHQJSvV89fTkR1fZQoaAZHQGvI7RWtEG9oB00SAWgIR0CUr4b8FY+0dX2UKGgGR0Buz0sSTQmeaAdNCwFoCEdAlLAsnAqNInV9lChoBkdAbTtgv114gWgHTTwBaAhHQJSwRyT6i0x1fZQoaAZHQGy1JHiFTNtoB00nAWgIR0CUsMOE/SpjdX2UKGgGR0BvxsRWcSXdaAdNKQFoCEdAlLEFg+hXbXV9lChoBkdAbeIUg0TDfmgHTS0BaAhHQJSycVIqbz91fZQoaAZHQHHTwRXfZVZoB00aAWgIR0CUsrOLR8c/dX2UKGgGR0BwyDjS5RTCaAdNIAFoCEdAlLPUzXSSeXV9lChoBkdAcFtVPva11GgHTRUBaAhHQJS1YDW9US91fZQoaAZHQHGRuAy2x6hoB01FAWgIR0CUtaQGfPHDdX2UKGgGR0BR82aYu01JaAdLumgIR0CUtduEVWS2dX2UKGgGR0Bt6dnf2saLaAdNBQFoCEdAlLYikbgjyHV9lChoBkdAcKDv99+gDmgHTRMBaAhHQJS2cuHvc8F1fZQoaAZHQHDhL0WdmQNoB00tAWgIR0CUtwRxcVxkdX2UKGgGR0BxVcjeKsMiaAdNLgFoCEdAlLc5ftx+8XV9lChoBkdAb/a0CzTnaGgHTQcBaAhHQJS3cny/bj91fZQoaAZHQHHJfr8iwB5oB01EAWgIR0CUuCfA9FF2dX2UKGgGR0Bxp7w5NoJzaAdNOwFoCEdAlLi9VvMr3HV9lChoBkdAcMA0fYBeX2gHTRYBaAhHQJS5pruYx+N1fZQoaAZHQHH5u+AVfu1oB01HAWgIR0CUulR+BpYcdX2UKGgGR0BvKszsQd0aaAdNDwFoCEdAlLuxB/qgRXV9lChoBkdAcKH7Ackt3GgHTWQBaAhHQJS8b2ugYgt1fZQoaAZHQHDnYZVGTcJoB00uAWgIR0CUvVm6XjU/dX2UKGgGR0Afg32mHgxbaAdL6GgIR0CUvgyi22G7dX2UKGgGR0BvTwsXizcAaAdNIwFoCEdAlL5pt78ejnV9lChoBkdAcGvdjoZAIWgHTQIBaAhHQJS/c7bL2Yh1fZQoaAZHQG2I/D1oQFtoB00nAWgIR0CU1kt7rs0IdX2UKGgGR0BwMs87p3X7aAdNEgFoCEdAlNZwm7aqTHV9lChoBkdAclRwc5sCT2gHTTMBaAhHQJTXTxvvSc91fZQoaAZHQHJarJr+HahoB00yAWgIR0CU2OnYQJ5WdX2UKGgGR0ByirdP+GXYaAdNLAFoCEdAlNlbah6By3V9lChoBkdAcXAwV0tAcGgHTWsBaAhHQJTaAmeDnNh1fZQoaAZHQGw13IMjNY9oB00oAWgIR0CU2hU34sVddX2UKGgGR0BynPdWQwK0aAdNmQFoCEdAlNofBN21UnV9lChoBkdAcfSAy2x6fWgHTQoBaAhHQJTauBreqJd1fZQoaAZHQHJtScbzbvhoB01kAWgIR0CU3MPmgam5dX2UKGgGR0AupLbHp8neaAdL7mgIR0CU3N8uBczJdX2UKGgGR0Buw3czqKP5aAdNKAFoCEdAlN0usYEW7HV9lChoBkdAcYWHxSYPXmgHTUABaAhHQJTdRsBQvYh1fZQoaAZHQG7DrupjtoloB00MAmgIR0CU3Veii7CjdX2UKGgGR0BvSgFaB7NTaAdNIQFoCEdAlN2w/1QIlnV9lChoBkdAcKQhzvJA+2gHTSoBaAhHQJTgUFwDNhV1fZQoaAZHQHMJ21twaR9oB00qAWgIR0CU4HS5AhStdX2UKGgGR0Bwb2XTmW+oaAdNBQFoCEdAlOGHPiT+vXV9lChoBkdAbKQJ3PiT+2gHTUQBaAhHQJTiSeQMhHN1fZQoaAZHQG6Jfhl18stoB00XAWgIR0CU4qAuqWC3dX2UKGgGR0Bt1URaouPFaAdNBwFoCEdAlOK7xAjY7XV9lChoBkdAcALsFMZgomgHTRMBaAhHQJTj2dSVGCt1fZQoaAZHQCtn7gsK9f1oB0vZaAhHQJTj9nJ1aGJ1fZQoaAZHQG6FMPJ7sv9oB00/AWgIR0CU5LN9ph4MdX2UKGgGR0BxlOcEvCdjaAdL92gIR0CU5PKHO8kEdX2UKGgGR0BxsSU8mrsCaAdNUQFoCEdAlOVgfEGZ/nV9lChoBkdAb0hmwJPZZmgHTSMBaAhHQJTm95dGAkN1fZQoaAZHQG7iV14gRsdoB00tAWgIR0CU5x+evpyIdX2UKGgGR0BrshQ1rIo3aAdNKAFoCEdAlOeInOSntXV9lChoBkdAcBOcynDR+mgHTT0BaAhHQJTns4zabnZ1fZQoaAZHQHF57wnYxtZoB00OAWgIR0CU6Y99+gDidX2UKGgGR0Bw1l9ZzPrwaAdNPQFoCEdAlOsdXHR1HXV9lChoBkdAbohT4tYjjmgHTR0BaAhHQJTsC6TW5H51fZQoaAZHQHIoSWmgrYpoB01WAWgIR0CU7Yj1PFefdX2UKGgGR0Bxng35vcagaAdNHgFoCEdAlO3QqI7/43V9lChoBkdAbuLfKISDiGgHTUUBaAhHQJTuHeTFERd1fZQoaAZHQG9EwDV6NVBoB00oAWgIR0CU7k0ZWJaadX2UKGgGR0Byu+UkfLcLaAdNUQNoCEdAlPDSvgWJrXV9lChoBkdAcqhlijL0SWgHTVwBaAhHQJTxEZsKsuF1fZQoaAZHQHEI9MXaakRoB00aAWgIR0CU8SHPu5SWdX2UKGgGR0BxGFEv0yxiaAdNFgFoCEdAlPGSTt9hJHV9lChoBkdAcB/Bq9GqgmgHTTMBaAhHQJTyEk1Mue11fZQoaAZHQG4O04rBj4JoB00jAWgIR0CU8iqbz9S/dX2UKGgGR0Bwd8Xk5p8GaAdNDQFoCEdAlPTtilSCOHV9lChoBkdAboty7wrlNmgHTR4BaAhHQJT27GT9sJp1fZQoaAZHQD5ZSQ5myxBoB0v0aAhHQJT3jRb8m8d1fZQoaAZHQHEqkG7jDKpoB00YAWgIR0CU+USQ5myxdX2UKGgGR0BwNBGus90SaAdNHwFoCEdAlPqAZ88cMnV9lChoBkdAcRdMPjGT92gHTUQBaAhHQJT7nfEXLvF1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}