Go Inoue
commited on
Commit
·
11e7a2c
1
Parent(s):
ea2da6e
Fix typo
Browse files
README.md
CHANGED
@@ -6,7 +6,7 @@ widget:
|
|
6 |
- text: "الهدف من الحياة هو [MASK] ."
|
7 |
---
|
8 |
|
9 |
-
#
|
10 |
|
11 |
## Model description
|
12 |
|
@@ -36,7 +36,7 @@ We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
|
|
36 |
You can use this model directly with a pipeline for masked language modeling:
|
37 |
```python
|
38 |
>>> from transformers import pipeline
|
39 |
-
>>> unmasker = pipeline('fill-mask', model='bert-base-camelbert-mix')
|
40 |
>>> unmasker("الهدف من الحياة هو [MASK] .")
|
41 |
[{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]',
|
42 |
'score': 0.10861027985811234,
|
@@ -63,8 +63,8 @@ You can use this model directly with a pipeline for masked language modeling:
|
|
63 |
Here is how to use this model to get the features of a given text in PyTorch:
|
64 |
```python
|
65 |
from transformers import AutoTokenizer, AutoModel
|
66 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-camelbert-mix')
|
67 |
-
model = AutoModel.from_pretrained('bert-base-camelbert-mix')
|
68 |
text = "مرحبا يا عالم."
|
69 |
encoded_input = tokenizer(text, return_tensors='pt')
|
70 |
output = model(**encoded_input)
|
@@ -73,8 +73,8 @@ output = model(**encoded_input)
|
|
73 |
and in TensorFlow:
|
74 |
```python
|
75 |
from transformers import AutoTokenizer, TFAutoModel
|
76 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-camelbert-mix')
|
77 |
-
model = TFAutoModel.from_pretrained('bert-base-camelbert-mix')
|
78 |
text = "مرحبا يا عالم."
|
79 |
encoded_input = tokenizer(text, return_tensors='tf')
|
80 |
output = model(encoded_input)
|
|
|
6 |
- text: "الهدف من الحياة هو [MASK] ."
|
7 |
---
|
8 |
|
9 |
+
# CAMeLBERT-Mix
|
10 |
|
11 |
## Model description
|
12 |
|
|
|
36 |
You can use this model directly with a pipeline for masked language modeling:
|
37 |
```python
|
38 |
>>> from transformers import pipeline
|
39 |
+
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-mix')
|
40 |
>>> unmasker("الهدف من الحياة هو [MASK] .")
|
41 |
[{'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]',
|
42 |
'score': 0.10861027985811234,
|
|
|
63 |
Here is how to use this model to get the features of a given text in PyTorch:
|
64 |
```python
|
65 |
from transformers import AutoTokenizer, AutoModel
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
|
67 |
+
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
|
68 |
text = "مرحبا يا عالم."
|
69 |
encoded_input = tokenizer(text, return_tensors='pt')
|
70 |
output = model(**encoded_input)
|
|
|
73 |
and in TensorFlow:
|
74 |
```python
|
75 |
from transformers import AutoTokenizer, TFAutoModel
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
|
77 |
+
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-mix')
|
78 |
text = "مرحبا يا عالم."
|
79 |
encoded_input = tokenizer(text, return_tensors='tf')
|
80 |
output = model(encoded_input)
|