Update model name
Browse files
README.md
CHANGED
@@ -15,18 +15,18 @@ We release pre-trained language models for Modern Standard Arabic (MSA), dialect
|
|
15 |
We also provide additional models that are pre-trained on a scaled-down set of the MSA variant (half, quarter, eighth, and sixteenth).
|
16 |
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
|
17 |
|
18 |
-
This model card describes **CAMeLBERT-MSA-sixteenth** (`bert-base-camelbert-msa-sixteenth`), a model pre-trained on a sixteenth of the full MSA dataset.
|
19 |
|
20 |
||Model|Variant|Size|#Word|
|
21 |
|-|-|:-:|-:|-:|
|
22 |
-
||`bert-base-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
|
23 |
-
||`bert-base-camelbert-ca`|CA|6GB|847M|
|
24 |
-
||`bert-base-camelbert-da`|DA|54GB|5.8B|
|
25 |
-
||`bert-base-camelbert-msa`|MSA|107GB|12.6B|
|
26 |
-
||`bert-base-camelbert-msa-half`|MSA|53GB|6.3B|
|
27 |
-
||`bert-base-camelbert-msa-quarter`|MSA|27GB|3.1B|
|
28 |
-
||`bert-base-camelbert-msa-eighth`|MSA|14GB|1.6B|
|
29 |
-
|✔|`bert-base-camelbert-msa-sixteenth`|MSA|6GB|746M|
|
30 |
|
31 |
## Intended uses
|
32 |
You can use the released model for either masked language modeling or next sentence prediction.
|
@@ -37,7 +37,7 @@ We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT).
|
|
37 |
You can use this model directly with a pipeline for masked language modeling:
|
38 |
```python
|
39 |
>>> from transformers import pipeline
|
40 |
-
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
|
41 |
>>> unmasker("الهدف من الحياة هو [MASK] .")
|
42 |
[{'sequence': '[CLS] الهدف من الحياة هو التغيير. [SEP]',
|
43 |
'score': 0.08320745080709457,
|
@@ -66,8 +66,8 @@ You can use this model directly with a pipeline for masked language modeling:
|
|
66 |
Here is how to use this model to get the features of a given text in PyTorch:
|
67 |
```python
|
68 |
from transformers import AutoTokenizer, AutoModel
|
69 |
-
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
|
70 |
-
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
|
71 |
text = "مرحبا يا عالم."
|
72 |
encoded_input = tokenizer(text, return_tensors='pt')
|
73 |
output = model(**encoded_input)
|
@@ -76,8 +76,8 @@ output = model(**encoded_input)
|
|
76 |
and in TensorFlow:
|
77 |
```python
|
78 |
from transformers import AutoTokenizer, TFAutoModel
|
79 |
-
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
|
80 |
-
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-camelbert-msa-sixteenth')
|
81 |
text = "مرحبا يا عالم."
|
82 |
encoded_input = tokenizer(text, return_tensors='tf')
|
83 |
output = model(encoded_input)
|
|
|
15 |
We also provide additional models that are pre-trained on a scaled-down set of the MSA variant (half, quarter, eighth, and sixteenth).
|
16 |
The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."*
|
17 |
|
18 |
+
This model card describes **CAMeLBERT-MSA-sixteenth** (`bert-base-arabic-camelbert-msa-sixteenth`), a model pre-trained on a sixteenth of the full MSA dataset.
|
19 |
|
20 |
||Model|Variant|Size|#Word|
|
21 |
|-|-|:-:|-:|-:|
|
22 |
+
||`bert-base-arabic-camelbert-mix`|CA,DA,MSA|167GB|17.3B|
|
23 |
+
||`bert-base-arabic-camelbert-ca`|CA|6GB|847M|
|
24 |
+
||`bert-base-arabic-camelbert-da`|DA|54GB|5.8B|
|
25 |
+
||`bert-base-arabic-camelbert-msa`|MSA|107GB|12.6B|
|
26 |
+
||`bert-base-arabic-camelbert-msa-half`|MSA|53GB|6.3B|
|
27 |
+
||`bert-base-arabic-camelbert-msa-quarter`|MSA|27GB|3.1B|
|
28 |
+
||`bert-base-arabic-camelbert-msa-eighth`|MSA|14GB|1.6B|
|
29 |
+
|✔|`bert-base-arabic-camelbert-msa-sixteenth`|MSA|6GB|746M|
|
30 |
|
31 |
## Intended uses
|
32 |
You can use the released model for either masked language modeling or next sentence prediction.
|
|
|
37 |
You can use this model directly with a pipeline for masked language modeling:
|
38 |
```python
|
39 |
>>> from transformers import pipeline
|
40 |
+
>>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth')
|
41 |
>>> unmasker("الهدف من الحياة هو [MASK] .")
|
42 |
[{'sequence': '[CLS] الهدف من الحياة هو التغيير. [SEP]',
|
43 |
'score': 0.08320745080709457,
|
|
|
66 |
Here is how to use this model to get the features of a given text in PyTorch:
|
67 |
```python
|
68 |
from transformers import AutoTokenizer, AutoModel
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth')
|
70 |
+
model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth')
|
71 |
text = "مرحبا يا عالم."
|
72 |
encoded_input = tokenizer(text, return_tensors='pt')
|
73 |
output = model(**encoded_input)
|
|
|
76 |
and in TensorFlow:
|
77 |
```python
|
78 |
from transformers import AutoTokenizer, TFAutoModel
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth')
|
80 |
+
model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth')
|
81 |
text = "مرحبا يا عالم."
|
82 |
encoded_input = tokenizer(text, return_tensors='tf')
|
83 |
output = model(encoded_input)
|