File size: 12,276 Bytes
dd1cb8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#Some codes are adopted from https://github.com/DCASE-REPO/DESED_task
import torch
import torch.nn as nn
import torch.nn.functional as F
class GLU(nn.Module):
def __init__(self, in_dim):
super(GLU, self).__init__()
self.sigmoid = nn.Sigmoid()
self.linear = nn.Linear(in_dim, in_dim)
def forward(self, x): #x size = [batch, chan, freq, frame]
lin = self.linear(x.permute(0, 2, 3, 1)) #x size = [batch, freq, frame, chan]
lin = lin.permute(0, 3, 1, 2) #x size = [batch, chan, freq, frame]
sig = self.sigmoid(x)
res = lin * sig
return res
class ContextGating(nn.Module):
def __init__(self, in_dim):
super(ContextGating, self).__init__()
self.sigmoid = nn.Sigmoid()
self.sigmoid = nn.Sigmoid()
self.linear = nn.Linear(in_dim, in_dim)
def forward(self, x): #x size = [batch, chan, freq, frame]
lin = self.linear(x.permute(0, 2, 3, 1)) #x size = [batch, freq, frame, chan]
lin = lin.permute(0, 3, 1, 2) #x size = [batch, chan, freq, frame]
sig = self.sigmoid(lin)
res = x * sig
return res
class Dynamic_conv2d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, bias=False, n_basis_kernels=4,
temperature=31, pool_dim='freq'):
super(Dynamic_conv2d, self).__init__()
self.in_planes = in_planes
self.out_planes = out_planes
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.pool_dim = pool_dim
self.n_basis_kernels = n_basis_kernels
self.attention = attention2d(in_planes, self.kernel_size, self.stride, self.padding, n_basis_kernels,
temperature, pool_dim)
self.weight = nn.Parameter(torch.randn(n_basis_kernels, out_planes, in_planes, self.kernel_size, self.kernel_size),
requires_grad=True)
if bias:
self.bias = nn.Parameter(torch.Tensor(n_basis_kernels, out_planes))
else:
self.bias = None
for i in range(self.n_basis_kernels):
nn.init.kaiming_normal_(self.weight[i])
def forward(self, x): #x size : [bs, in_chan, frames, freqs]
if self.pool_dim in ['freq', 'chan']:
softmax_attention = self.attention(x).unsqueeze(2).unsqueeze(4) # size : [bs, n_ker, 1, frames, 1]
elif self.pool_dim == 'time':
softmax_attention = self.attention(x).unsqueeze(2).unsqueeze(3) # size : [bs, n_ker, 1, 1, freqs]
elif self.pool_dim == 'both':
softmax_attention = self.attention(x).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) # size : [bs, n_ker, 1, 1, 1]
batch_size = x.size(0)
aggregate_weight = self.weight.view(-1, self.in_planes, self.kernel_size, self.kernel_size) # size : [n_ker * out_chan, in_chan]
if self.bias is not None:
aggregate_bias = self.bias.view(-1)
output = F.conv2d(x, weight=aggregate_weight, bias=aggregate_bias, stride=self.stride, padding=self.padding)
else:
output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding)
# output size : [bs, n_ker * out_chan, frames, freqs]
output = output.view(batch_size, self.n_basis_kernels, self.out_planes, output.size(-2), output.size(-1))
# output size : [bs, n_ker, out_chan, frames, freqs]
if self.pool_dim in ['freq', 'chan']:
assert softmax_attention.shape[-2] == output.shape[-2]
elif self.pool_dim == 'time':
assert softmax_attention.shape[-1] == output.shape[-1]
output = torch.sum(output * softmax_attention, dim=1) # output size : [bs, out_chan, frames, freqs]
return output
class attention2d(nn.Module):
def __init__(self, in_planes, kernel_size, stride, padding, n_basis_kernels, temperature, pool_dim):
super(attention2d, self).__init__()
self.pool_dim = pool_dim
self.temperature = temperature
hidden_planes = int(in_planes / 4)
if hidden_planes < 4:
hidden_planes = 4
if not pool_dim == 'both':
self.conv1d1 = nn.Conv1d(in_planes, hidden_planes, kernel_size, stride=stride, padding=padding, bias=False)
self.bn = nn.BatchNorm1d(hidden_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1d2 = nn.Conv1d(hidden_planes, n_basis_kernels, 1, bias=True)
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
else:
self.fc1 = nn.Linear(in_planes, hidden_planes)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(hidden_planes, n_basis_kernels)
def forward(self, x): #x size : [bs, chan, frames, freqs]
if self.pool_dim == 'freq':
x = torch.mean(x, dim=3) #x size : [bs, chan, frames]
elif self.pool_dim == 'time':
x = torch.mean(x, dim=2) #x size : [bs, chan, freqs]
elif self.pool_dim == 'both':
# x = torch.mean(torch.mean(x, dim=2), dim=1) #x size : [bs, chan]
x = F.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)
elif self.pool_dim == 'chan':
x = torch.mean(x, dim=1) #x size : [bs, freqs, frames]
if not self.pool_dim == 'both':
x = self.conv1d1(x) #x size : [bs, hid_chan, frames]
x = self.bn(x)
x = self.relu(x)
x = self.conv1d2(x) #x size : [bs, n_ker, frames]
else:
x = self.fc1(x) #x size : [bs, hid_chan]
x = self.relu(x)
x = self.fc2(x) #x size : [bs, n_ker]
return F.softmax(x / self.temperature, 1)
class CNN(nn.Module):
def __init__(self,
n_input_ch,
activation="Relu",
conv_dropout=0,
kernel=[3, 3, 3],
pad=[1, 1, 1],
stride=[1, 1, 1],
n_filt=[64, 64, 64],
pooling=[(1, 4), (1, 4), (1, 4)],
normalization="batch",
n_basis_kernels=4,
DY_layers=[0, 1, 1, 1, 1, 1, 1],
temperature=31,
pool_dim='freq'):
super(CNN, self).__init__()
self.n_filt = n_filt
self.n_filt_last = n_filt[-1]
cnn = nn.Sequential()
def conv(i, normalization="batch", dropout=None, activ='relu'):
in_dim = n_input_ch if i == 0 else n_filt[i - 1]
out_dim = n_filt[i]
if DY_layers[i] == 1:
cnn.add_module("conv{0}".format(i), Dynamic_conv2d(in_dim, out_dim, kernel[i], stride[i], pad[i],
n_basis_kernels=n_basis_kernels,
temperature=temperature, pool_dim=pool_dim))
else:
cnn.add_module("conv{0}".format(i), nn.Conv2d(in_dim, out_dim, kernel[i], stride[i], pad[i]))
if normalization == "batch":
cnn.add_module("batchnorm{0}".format(i), nn.BatchNorm2d(out_dim, eps=0.001, momentum=0.99))
elif normalization == "layer":
cnn.add_module("layernorm{0}".format(i), nn.GroupNorm(1, out_dim))
if activ.lower() == "leakyrelu":
cnn.add_module("Relu{0}".format(i), nn.LeakyReLu(0.2))
elif activ.lower() == "relu":
cnn.add_module("Relu{0}".format(i), nn.ReLu())
elif activ.lower() == "glu":
cnn.add_module("glu{0}".format(i), GLU(out_dim))
elif activ.lower() == "cg":
cnn.add_module("cg{0}".format(i), ContextGating(out_dim))
if dropout is not None:
cnn.add_module("dropout{0}".format(i), nn.Dropout(dropout))
for i in range(len(n_filt)):
conv(i, normalization=normalization, dropout=conv_dropout, activ=activation)
cnn.add_module("pooling{0}".format(i), nn.AvgPool2d(pooling[i]))
self.cnn = cnn
def forward(self, x): #x size : [bs, chan, frames, freqs]
x = self.cnn(x)
return x
import torch
import torch.nn as nn
class BiGRU(nn.Module):
def __init__(self, n_in, n_hidden, dropout=0, num_layers=1):
super(BiGRU, self).__init__()
self.rnn = nn.GRU(n_in, n_hidden, bidirectional=True, dropout=dropout, batch_first=True, num_layers=num_layers)
self.input_size = n_in
def forward(self, x):
x, _ = self.rnn(x)
return x
class CNN(nn.Module):
def __init__(self, n_input_ch, activation="glu", conv_dropout=0.5, **convkwargs):
super(CNN, self).__init__()
# Define CNN layers here
self.n_filt = [n_input_ch] # Example, replace with actual filter sizes
def forward(self, x):
# Define forward pass for CNN
return x
class CRNN(nn.Module):
def __init__(self,
n_input_ch,
n_class=10,
activation="glu",
conv_dropout=0.5,
n_RNN_cell=128,
n_RNN_layer=2,
rec_dropout=0,
attention=True,
**convkwargs):
super(CRNN, self).__init__()
self.n_input_ch = n_input_ch
self.attention = attention
self.n_class = n_class
self.cnn = CNN(n_input_ch=n_input_ch, activation=activation, conv_dropout=conv_dropout, **convkwargs)
self.rnn = BiGRU(n_in=41, n_hidden=n_RNN_cell, dropout=rec_dropout, num_layers=n_RNN_layer)
self.dropout = nn.Dropout(conv_dropout)
self.sigmoid = nn.Sigmoid()
self.dense = nn.Linear(n_RNN_cell * 2, n_class)
if self.attention:
self.dense_softmax = nn.Linear(n_RNN_cell * 2, n_class)
if self.attention == "time":
self.softmax = nn.Softmax(dim=1) # softmax on time dimension
elif self.attention == "class":
self.softmax = nn.Softmax(dim=-1) # softmax on class dimension
def forward(self, x): #input size : [bs, frames, freqs]
if self.n_input_ch > 1:
x = x.transpose(1, 2) # Transpose to [bs, freqs, frames]
else:
x = x.unsqueeze(1) # Add channel dimension [bs, 1, frames, freqs]
# Pass through CNN
x = self.cnn(x)
# Get the size of the output
bs, ch, frame, freq = x.size() # Note the corrected order
if freq != 1:
x = x.permute(0, 2, 1, 3) # Permute to [bs, frames, chan, freqs]
x = x.contiguous().view(bs, frame, ch * freq) # Reshape to [bs, frames, chan*freq]
else:
x = x.squeeze(3) # Squeeze the frequency dimension
x = x.permute(0, 2, 1) # Permute to [bs, frames, chan]
# Ensure the input size to the RNN matches the expected input_size
rnn_input_size = x.size(-1) # Get the expected input size of the RNN
if x.size(-1) != rnn_input_size:
raise ValueError(f"Expected input size {rnn_input_size}, got {x.size(-1)}")
# RNN
x = self.rnn(x) # x size : [bs, frames, 2 * chan]
x = self.dropout(x)
# Classifier
strong = self.dense(x) # strong size : [bs, frames, n_class]
strong = self.sigmoid(strong)
if self.attention:
# Add attention mechanism if needed
pass
return strong.mean(dim=-1) |