File size: 9,089 Bytes
dd1cb8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.optim import AdamW, lr_scheduler
from torch.utils.data import Dataset
from torchvision import models
from sklearn.metrics import f1_score, accuracy_score
from metrics.event_based_metrics import event_metrics
from .audio_preprocessing import *

class AudioDataset(Dataset):
    def __init__(self, fbank_features, annotation):
        self.fbank_features = fbank_features
        self.annotation = annotation

    def __len__(self):
        return len(self.fbank_features)

    def __getitem__(self, idx):
        fbank_features = self.fbank_features[idx]
        annotation = self.annotation[idx]
        fbank_features_array = np.array(fbank_features)
        fbank_features_tensor = torch.tensor(fbank_features_array, dtype=torch.float32)
        annotation_tensor = torch.tensor(annotation, dtype=torch.float32)
        return fbank_features_tensor, annotation_tensor

class AudioMobileNetV2(nn.Module):
    def __init__(self):
        super(AudioMobileNetV2, self).__init__()
        self.mobilenetv2 = models.mobilenet_v2(pretrained=True)
        self.mobilenetv2.features[0][0] = nn.Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        self.mobilenetv2.classifier[1] = nn.Linear(self.mobilenetv2.last_channel, 1)  # Binary classification

    def forward(self, x):
        batch_size, num_frame, feature_dim = x.size()
        x = x.view(batch_size * num_frame, 1, 1, feature_dim)  
        x = self.mobilenetv2(x)
        x = x.view(batch_size, num_frame, -1)  
        return x

class AudioBiLSTM(nn.Module):
    def __init__(self, num_features):
        super().__init__()
        self.lstm1 = nn.LSTM(num_features, 128, bidirectional=True, batch_first=True)
        self.lstm2 = nn.LSTM(256, 128, bidirectional=True, batch_first=True)
        self.dense = nn.Linear(256, 1)

    def forward(self, x):
        out, _ = self.lstm1(x)
        out, _ = self.lstm2(out)
        out = self.dense(out)
        return out
    
class AudioTransformer(nn.Module):
    def __init__(self, input_dim=41, hidden_dim=128, num_heads=4, num_layers=2):
        super().__init__()
        self.input_projection = nn.Linear(input_dim, hidden_dim)
        encoder_layers = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads)
        self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers)
        self.fc = nn.Linear(hidden_dim, 1) 

    def forward(self, x):
        batch_size, num_frame, feature_dim = x.size()
        x = x.view(batch_size*num_frame, 1, feature_dim)
        x = self.input_projection(x)
        x = x.permute(1, 0, 2)  
        transformer_out = self.transformer_encoder(x)
        out = transformer_out[0, :, :]
        out = self.fc(out)
        out = out.view(batch_size, num_frame, 1)
        return out

def train(model, train_loader, device, num_epochs=10):
    criterion = nn.BCEWithLogitsLoss()
    optimizer = AdamW(model.parameters(), lr=0.001)
    scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0)
    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        count = 0
        for inputs, labels in train_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            count += 1
            optimizer.zero_grad()
            outputs = model(inputs)
            outputs = outputs.view(-1)
            labels = labels.view(-1).float()  # Convert labels to float for BCEWithLogitsLoss
                
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            
        scheduler.step()
        print(f'Epoch {epoch+1}/{num_epochs}, Loss: {running_loss/len(train_loader)}, LR: {scheduler.get_last_lr()[0]}')

def eval(model, test_loader, device):
    model.eval()
    acc_list = []
    framef_list = []
    eventf_list = []
    iou_list = []
    with torch.no_grad():
        for inputs, labels in test_loader:
            # Move inputs and labels to GPU
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            outputs = outputs.view(-1)
            labels = labels.view(-1).float()  # Convert labels to float for BCEWithLogitsLoss
            preds = torch.sigmoid(outputs)  # Apply sigmoid to get probabilities
            preds = (preds > 0.5).float()  # Convert probabilities to binary predictions
            labels = labels.cpu().numpy()
            preds = preds.cpu().numpy()
            # Frame-based accuracy
            accuracy = accuracy_score(labels, preds)
            acc_list.append(accuracy)
            # Frame-based F1 score
            framef = f1_score(labels, preds)
            framef_list.append(framef)
            # Event-based metrics
            eventf, iou, counted_events, fake_events, undetected_events = event_metrics(labels, preds, tolerance=9, overlap_threshold=0.75)
            eventf_list.append(eventf)
            iou_list.append(iou)
    return acc_list, framef_list, eventf_list, iou_list

def save_model(model, path):
    torch.save(model.state_dict(), path)
    print(f"Model saved to {path}")



class AsymmetricalFocalLoss(nn.Module):
    def __init__(self, gamma=0, zeta=0):
        super(AsymmetricalFocalLoss, self).__init__()
        self.gamma = gamma   # balancing between classes
        self.zeta = zeta     # balancing between active/inactive frames

    def forward(self, pred, target):
        losses = - (((1 - pred) ** self.gamma) * target * torch.clamp_min(torch.log(pred), -100) +
                    (pred ** self.zeta) * (1 - target) * torch.clamp_min(torch.log(1 - pred), -100))
        return torch.mean(losses)

def train_FDYSED(model, train_loader, device, num_epochs=10):
    criterion = AsymmetricalFocalLoss(gamma=2, zeta=0.5)
    optimizer = AdamW(model.parameters(), lr=0.001)
    scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0)
    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        count = 0
        for inputs, labels in train_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            count += 1
            optimizer.zero_grad()
            outputs = model(inputs)
            outputs = outputs.view(-1)
            labels = labels.view(-1).float()  # Convert labels to float for BCEWithLogitsLoss
                
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            
        scheduler.step()
        print(f'Epoch {epoch+1}/{num_epochs}, Loss: {running_loss/len(train_loader)}, LR: {scheduler.get_last_lr()[0]}')

# MDFDSED
def obtain_loss(train_cfg, model_outs, labels, weak_labels, mask_strong, mask_weak):
    strong_pred_stud, strong_pred_tch, weak_pred_stud, weak_pred_tch = model_outs
    loss_total = 0

    # loss_class_weak = train_cfg["criterion_class"](weak_pred_stud[mask_weak], weak_labels)
    # loss_cons_weak = train_cfg["criterion_cons"](weak_pred_stud, weak_pred_tch.detach())

    w_cons = train_cfg["w_cons_max"] * train_cfg["scheduler"]._get_scaling_factor()
    loss_class_strong = train_cfg["criterion_class"](strong_pred_stud[:], labels[:]) #strong masked label size = [bs_strong, n_class, frames]
    loss_cons_strong = train_cfg["criterion_cons"](strong_pred_stud, strong_pred_tch.detach())
    loss_total += loss_class_strong + w_cons * (loss_cons_strong) # train_cfg["w_weak"] * loss_class_weak + \  + train_cfg["w_weak_cons"] * loss_cons_weak

    return loss_total #, loss_class_strong, loss_class_weak, loss_cons_strong, loss_cons_weak

def train_MDFDSED(model, train_loader, device, num_epochs=10):
    train_cfg = yaml.load(open("./config_MDFDbest.yaml", "r"), Loader=yaml.Loader)
    criterion = obtain_loss
    optimizer = AdamW(model.parameters(), lr=0.001)
    scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0)
    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        count = 0
        for inputs, labels in train_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            count += 1
            optimizer.zero_grad()
            outputs = model(inputs)
            outputs = outputs.view(-1)
            labels = labels.view(-1).float()  # Convert labels to float for BCEWithLogitsLoss
                
            loss = criterion(train_cfg, outputs, labels, None, None, None)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            
        scheduler.step()
        print(f'Epoch {epoch+1}/{num_epochs}, Loss: {running_loss/len(train_loader)}, LR: {scheduler.get_last_lr()[0]}')